Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure

Zhen-Zhong Yan , Zhao-Han Jiang , Jun-Peng Lu , Zhen-Hua Ni

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138115

PDF (7127KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138115 DOI: 10.1007/s11467-018-0785-z
RESEARCH ARTICLE

Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure

Author information +
History +
PDF (7127KB)

Abstract

Integration of heterogenous materials produces compelling physical phenomena and increased performance of optoelectronic devices. In this work, we integrate CsPbBr3 microplate with WS2 monolayer to investigate the interfacial carrier transfer mechanism in the heterojunction. The quenching of photoluminescence (PL) emission from CsPbBr3 and WS2 after heterostructure formation indicates efficient charge transfer in the junction. Low-temperature PL spectra reveal that the decreasing PL of WS2 arises from the vanishing of biexcitons. Photodetection based on the WS2/CsPbBr3 heterostructure is demonstrated. The higher performance from the junction further certifies the occurrence of charge transfer in the heterojunction.

Keywords

TMDs / inorganic perovskite / heterostructure / charge transfer

Cite this article

Download citation ▾
Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu, Zhen-Hua Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115 DOI:10.1007/s11467-018-0785-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Editorial, Graphene is not alone, Nat. Nanotechnol. 7(11), 683 (2012)

[2]

Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, Twodimensional transition metal dichalcogenides: Interface and defect engineering, Chem. Soc. Rev. 47(9), 3100 (2018)

[3]

Y. Lee, X. Zhang, W. Zhang, M. Chang, C. Lin, K. Chang, Y. Yu, J. T. Wang, C. Chang, L. Li, and T. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater. 24(17), 2320 (2012)

[4]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2, Nat. Nanotechnol. 8(9), 634 (2013)

[5]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)

[6]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)

[7]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3(1), 887 (2012)

[8]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)

[9]

A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9(4), 257 (2014)

[10]

W. Wang, R. Du, X. Guo, J. Jiang, W. Zhao, Z. Ni, X. Wang, Y. You, and Z. Ni, Interfacial amplification for graphene-based position-sensitive-detectors, Light Sci. Appl. 6(10), e17113 (2017)

[11]

J. Lu, J. H. Lu, H. Liu, B. Liu, K. X. Chan, J. Lin, W. Chen, K. P. Loh, and C. H. Sow, Improved photoelectrical properties of MoS2 films after laser micromachining, ACS Nano 8(6), 6334 (2014)

[12]

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponse, ACS Nano 8(8), 8285 (2014)

[13]

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, Hybrid 2D-0D MoS2- PbS quantum dot photodetectors,Adv. Mater. 27(1), 176 (2015)

[14]

D. Jariwala, V. K. Sangwan, C. C. Wu, P. L. Prabhumirashi, M. L. Geier, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode, Proc. Natl. Acad. Sci. USA 110(45), 18076 (2013)

[15]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6(1) (2015)

[16]

V. K. Ravi, G. B. Markad, and A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X= Cl, Br, I) perovskite nanocrystals, ACS Energy Lett. 1(4), 665 (2016)

[17]

X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, Y. Wang, M. Wu, A. Xie, and H. Zeng, Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation, ACS Appl. Mater. Inter. 10(3), 2801 (2018)

[18]

D. Kwak, D. Lim, H. Ra, P. Ramasamy, and J. Lee, High performance hybrid graphene–CsPbBr3−xIxperovskite nanocrystal photodetector, RSC Adv. 6(69), 65252 (2016)

[19]

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure, Nanoscale 10(4), 1650 (2018)

[20]

Y. Liu, H. Li, X. Zheng, X. Cheng, and T. Jiang, Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots, Opt. Mater. Express 7(4), 1327 (2017)

[21]

H. W. Liu, J. P. Lu, H. M. Fan, C. H. Sow, S. H. Tang, and X. H. Zhang, Temperature and composition dependence of photoluminescence dynamics in CdSxSe1−x(0≤x≤1) nanobelts, J. Appl. Phys. 111(7), 073112 (2012)

[22]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15(6), 3692 (2015)

[23]

V. D. Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun. 5, 3586 (2014)

[24]

G. Moody, C. Kavir Dass, K. Hao, C. Chen, L. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)

[25]

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, Excitonic switches operating at around 100 K, Nat. Photonics 3(10), 577 (2009)

[26]

T. Byrnes, N. Y. Kim, and Y. Yamamoto, Exciton–polariton condensates, Nat. Phys. 10(11), 803 (2014)

[27]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. López-Urías, J. Charlier, H. Terrones, and M. Terrones, Identification of individual and few layers of WS2 using Raman spectroscopy, Sci. Rep. 3(1), 1755 (2013)

[28]

J. Lu, H. Liu, E. S. Tok, and C. Sow, Interactions between lasers and two-dimensional transition metal dichalcogenides, Chem. Soc. Rev. 45(9), 2494 (2016)

[29]

X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol. 9(9), 682 (2014)

[30]

G. Liu, W. Shan, Y. Yao, W. Yao, and D. Xiao, Threeband tight-binding model for monolayers of group-VIB transition metal dichalcogenides, Phys. Rev. B 88(8), 085433 (2013)

[31]

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells, J. Phys. Chem. Lett. 7(1), 167 (2016)

[32]

H. Liu, J. Lu, K. Ho, Z. Hu, Z. Dang, A. Carvalho, H. R. Tan, E. S. Tok, and C. H. Sow, Fluorescence concentric triangles: A case of chemical heterogeneity in WS2 atomic monolayer, Nano Lett. 16(9), 5559 (2016)

[33]

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, Biexciton emission from edges and grain boundaries of triangular WS2 monolayers, ACS Nano 10(2), 2399 (2016)

[34]

A. Venkatakrishnan, H. Chua, P. Tan, Z. Hu, H. Liu, Y. Liu, A. Carvalho, J. Lu, and C. H. Sow, Microsteganography on WS2 monolayers tailored by direct laser painting, ACS Nano 11(1), 713 (2017)

[35]

J. C. Kim, D. R. Wake, and J. P. Wolfe, Thermo dynamics of biexcitons in a GaAs quantum well, Phys. Rev. B 50(20), 15099 (1994)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (7127KB)

1544

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/