Dynamics of coherence-induced state ordering under Markovian channels

Long-Mei Yang, Bin Chen, Shao-Ming Fei, Zhi-Xi Wang

PDF(6459 KB)
PDF(6459 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130310. DOI: 10.1007/s11467-018-0780-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamics of coherence-induced state ordering under Markovian channels

Author information +
History +

Abstract

We study the dynamics of coherence-induced state ordering under incoherent channels, particularly four specific Markovian channels: amplitude damping channel, phase damping channel, depolarizing channel and bit flit channel for single-qubit states. We show that the amplitude damping channel, phase damping channel, and depolarizing channel do not change the coherence-induced state ordering by l1 norm of coherence, relative entropy of coherence, geometric measure of coherence, and Tsallis relative α-entropies, while the bit flit channel does change for some special cases.

Keywords

l1-norm of coherence / relative entropy of coherence / geometric measure of coherence / Tsallis relative α-entropies of coherence / ordering state

Cite this article

Download citation ▾
Long-Mei Yang, Bin Chen, Shao-Ming Fei, Zhi-Xi Wang. Dynamics of coherence-induced state ordering under Markovian channels. Front. Phys., 2018, 13(5): 130310 https://doi.org/10.1007/s11467-018-0780-4

References

[1]
J. Åberg, Catalytic coherence, Phys. Rev. Lett. 113(15), 150402 (2014)
CrossRef ADS Google scholar
[2]
V. Narasimhachar and G. Gour, Low-temperature thermodynamics with quantum coherence, Nat. Commun. 6(1), 7689 (2015)
CrossRef ADS Google scholar
[3]
P. Ćwikliński, M. Studzinski, M. Horodecki, and J. Oppenheim, Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics, Phys. Rev. Lett. 115(21), 210403 (2015)
CrossRef ADS Google scholar
[4]
M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Commun. 6(1), 6383 (2015)
CrossRef ADS Google scholar
[5]
M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Quantum coherence, timetranslation symmetry, and thermodynamics, Phys. Rev. X 5(2), 021001 (2015)
CrossRef ADS Google scholar
[6]
M. B. Plenio and S. F. Huelga, Dephasing-assisted transport: Quantum networks and biomolecules, New J. Phys. 10(11), 113019 (2008)
CrossRef ADS Google scholar
[7]
P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, Role of quantum coherence and environmental fluctuations in chromophoric energy transport, J. Phys. Chem. B 113(29), 9942 (2009)
CrossRef ADS Google scholar
[8]
S. Lloyd, Quantum coherence in biological systems, J. Phys. Conf. Ser. 302, 012037 (2011)
CrossRef ADS Google scholar
[9]
C. M. Li, N. Lambert, Y. N. Chen, G. Y. Chen, and F. Nori, Witnessing quantum coherence: From solid-state to biological systems, Sci. Rep. 2(1), 885 (2012)
CrossRef ADS Google scholar
[10]
S. Huelga and M. Plenio, Vibrations, quanta and biology, Contemp. Phys. 54(4), 181 (2013)
CrossRef ADS Google scholar
[11]
F. Levi and F. Mintert, A quantitative theory of coherent delocalization, New J. Phys. 16(3), 033007 (2014)
CrossRef ADS Google scholar
[12]
H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, and M. Hybertsen, Probing the conductance superposition law in singlemolecule circuits with parallel paths, Nat. Nanotechnol. 7(10), 663 (2012)
CrossRef ADS Google scholar
[13]
O. Karlström, H. Linke, G. Karlstrom, and A. Wacker, Increasing thermoelectric performance using coherent transport, Phys. Rev. B 84(11), 113415 (2011)
CrossRef ADS Google scholar
[14]
J. Åberg, Quanatifying superposition, arXiv: 0612146 (2006)
[15]
T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
CrossRef ADS Google scholar
[16]
A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring quantum coherence with entanglement, Phys. Rev. Lett. 115(2), 020403 (2015)
CrossRef ADS Google scholar
[17]
F. G. Zhang, L. H. Shao, Y. Luo, and Y. M. Li, Ordering states with Tsallis relative a-entropies of coherence, Quant. Inf. Process 16, 31 (2017)
CrossRef ADS Google scholar
[18]
F. G. Zhang and Y. M. Li, Coherent-induced state ordering with fixed mixedness, arXiv: 1704.02244v1 (2017)
[19]
C. L. Liu, X. D. Yu, G. F. Xu, and D. M. Tong, Ordering states with coherence measures, Quantum Inform. Process. 15(10), 4189 (2016)
CrossRef ADS Google scholar
[20]
X. Y. Hu, Channels that do not generate coherence, Phys. Rev. A 94(1), 012326 (2016)
CrossRef ADS Google scholar
[21]
L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Ordering states with various coherence measures, Quant. Inf. Process 17, 91 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6459 KB)

Accesses

Citations

Detail

Sections
Recommended

/