Wideband high-efficient linear polarization rotators

Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu

PDF(9604 KB)
PDF(9604 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137803. DOI: 10.1007/s11467-018-0779-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Wideband high-efficient linear polarization rotators

Author information +
History +

Abstract

We demonstrate a wideband polarization rotator with characteristics of high efficiency and large-range incidence angle by using a very simple anisotropic reflective metasurface. The calculated results show that reflection coefficient of cross polarization is larger than 71% over an octave frequency bandwidth from ~4.9 GHz to ~10.4 GHz. The proposed metasurface can still work very well even at incidence angle of 60◦. The experiment at microwave frequencies is carried out and its results agree well with the simulated ones.

Keywords

polarization / metasurface

Cite this article

Download citation ▾
Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu. Wideband high-efficient linear polarization rotators. Front. Phys., 2018, 13(5): 137803 https://doi.org/10.1007/s11467-018-0779-x

References

[1]
M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press, 1999
CrossRef ADS Google scholar
[2]
J. A. Kong, Electromagnetic Wave Theory, Cambridge: EMW Publishing, 2005
[3]
C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures, Phys. Rev. B 85(19), 195131 (2012)
CrossRef ADS Google scholar
[4]
L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, Metamaterials for enhanced polarization conversion in plasmonic excitation, ACS Nano 5(6), 5100 (2011)
CrossRef ADS Google scholar
[5]
R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)
CrossRef ADS Google scholar
[6]
L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)
CrossRef ADS Google scholar
[7]
J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, A helical metamaterial for broadband circular polarization conversion, Adv. Opt. Mater. 3(10), 1411 (2015)
CrossRef ADS Google scholar
[8]
Y. Cheng, R. Gong, and L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves, Plasmonics 12(4), 1113 (2017)
CrossRef ADS Google scholar
[9]
Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, D. Feng, Z. Xu, and S. Qu, Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes, Sci. Rep. 6(1), 34518 (2016)
CrossRef ADS Google scholar
[10]
M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling, Phys. Rev. Lett. 108(21), 213905 (2012)
CrossRef ADS Google scholar
[11]
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334(6054), 333 (2011)
CrossRef ADS Google scholar
[12]
J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, Nanostructured holograms for broadband manipulation of vector beams, Nano Lett. 13(9), 4269 (2013)
CrossRef ADS Google scholar
[13]
N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarterwave plate based on plasmonic metasurfaces, Nano Lett. 12(12), 6328 (2012)
CrossRef ADS Google scholar
[14]
J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett. 99(6), 063908 (2007)
CrossRef ADS Google scholar
[15]
Z. Y. Song, L. Zhang, and Q. H. Liu, High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces, Plasmonics 11(1), 61 (2016)
CrossRef ADS Google scholar
[16]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340(6138), 1304 (2013)
CrossRef ADS Google scholar
[17]
Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping, Opt. Express 21(15), 18178 (2013)
CrossRef ADS Google scholar
[18]
Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metareflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett. 14(3), 1394 (2014)
CrossRef ADS Google scholar
[19]
Z. Y. Song, and B. L. Zhang, Wide-angle polarizationinsensitive transparency of a continuous opaque metal film for near-infrared light, Opt. Express 22(6), 6519 (2014)
CrossRef ADS Google scholar
[20]
Z. Y. Song, J. Zhu, C. Zhu, Z. Yu, and Q. H. Liu, Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric metareflect arrays, Mater. Lett. 159, 269 (2015)
CrossRef ADS Google scholar
[21]
S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11(5), 426 (2012)
CrossRef ADS Google scholar
[22]
P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, Versatile polarization generation with an aluminum plasmonic metasurface, Nano Lett. 17(1), 445 (2017)
CrossRef ADS Google scholar
[23]
P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and A. Q. Liu, Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Adv. Opt. Mater. 5(7), 1600938 (2017)
CrossRef ADS Google scholar
[24]
P. C. Wu, J. W. Chen, C. W. Yin, Y. C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K. W. Lee, C. J. Chuang, C. M. Wang, and D. P. Tsai, Visible metasurfaces for on-chip polarimetry, ACS Photonics, (2017) (published soon)
[25]
P. C. Wu, N. Papasimakis, and D. P. Tsai, Self-affine graphene metasurfaces for tunable broadband absorption, Phys. Rev. Appl. 6(4), 044019 (2016)
CrossRef ADS Google scholar
[26]
L. Cong, P. Pitchappa, C. Lee, and R. Singh, Active phase transition via loss engineering in a terahertz MEMS metamaterial, Adv. Mater. 29(26), 1700733 (2017)
CrossRef ADS Google scholar
[27]
L. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms, Adv. Opt. Mater. 5(2), 1600716 (2017)
CrossRef ADS Google scholar
[28]
L. Cong, Y. K. Srivastava, and R. Singh, Near-field inductive coupling induced polarization control in metasurfaces, Adv. Opt. Mater. 4(6), 848 (2016)
CrossRef ADS Google scholar
[29]
L. Cong, Y. K. Srivastava, and R. Singh, Inter and intrametamolecular interaction enabled broadband highefficiency polarization control in metasurfaces, Appl. Phys. Lett. 108(1), 011110 (2016)
CrossRef ADS Google scholar
[30]
L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control, Adv. Mater. 27(42), 6630 (2015)
CrossRef ADS Google scholar
[31]
L. Cong, N. Xu, W. Zhang, and R. Singh, Polarization control in terahertz metasurfaces with the lowest order rotational symmetry, Adv. Opt. Mater. 3(9), 1176 (2015)
CrossRef ADS Google scholar
[32]
L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)
CrossRef ADS Google scholar
[33]
D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, Metamaterial polarization converter analysis: Limits of performance, Appl. Phys. B 112(2), 143 (2013)
CrossRef ADS Google scholar
[34]
R. Malureanu, W. Sun, M. Zalkovskij, Q. He, L. Zhou, P. Uhd Jepsen, and A. Lavrinenko, Metamaterial-based design for a half-wavelength plate in the terahertz range, Appl. Phys. A Mater. Sci. Process. 119(2), 467 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(9604 KB)

Accesses

Citations

Detail

Sections
Recommended

/