Cluster synchronization in complex network of coupled chaotic circuits: An experimental study

Ben Cao, Ya-Feng Wang, Liang Wang, Yi-Zhen Yu, Xin-Gang Wang

PDF(3014 KB)
PDF(3014 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130505. DOI: 10.1007/s11467-018-0775-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Cluster synchronization in complex network of coupled chaotic circuits: An experimental study

Author information +
History +

Abstract

By a small-size complex network of coupled chaotic Hindmarsh-Rose circuits, we study experimentally the stability of network synchronization to the removal of shortcut links. It is shown that the removal of a single shortcut link may destroy either completely or partially the network synchronization. Interestingly, when the network is partially desynchronized, it is found that the oscillators can be organized into different groups, with oscillators within each group being highly synchronized but are not for oscillators from different groups, showing the intriguing phenomenon of cluster synchronization. The experimental results are analyzed by the method of eigenvalue analysis, which implies that the formation of cluster synchronization is crucially dependent on the network symmetries. Our study demonstrates the observability of cluster synchronization in realistic systems, and indicates the feasibility of controlling network synchronization by adjusting network topology.

Keywords

chaos synchronization / pattern formation / neuronal circuits

Cite this article

Download citation ▾
Ben Cao, Ya-Feng Wang, Liang Wang, Yi-Zhen Yu, Xin-Gang Wang. Cluster synchronization in complex network of coupled chaotic circuits: An experimental study. Front. Phys., 2018, 13(5): 130505 https://doi.org/10.1007/s11467-018-0775-1

References

[1]
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Berlin: Springer, 1984
CrossRef ADS Google scholar
[2]
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge: Cambridge University Press, 2001
CrossRef ADS Google scholar
[3]
S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003
[4]
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)
CrossRef ADS Google scholar
[5]
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef ADS Google scholar
[6]
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64(8), 821 (1990)
CrossRef ADS Google scholar
[7]
L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett. 80(10), 2109 (1998)
CrossRef ADS Google scholar
[8]
G. Hu, J. Z. Yang, and W. Liu, Instability and controllability of linearly coupled oscillators: Eigenvalue analysis, Phys. Rev. E 58(4), 4440 (1998)
CrossRef ADS Google scholar
[9]
L. Huang, Q. Chen, Y. C. Lai, and L. M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems, Phys. Rev. E 80(3), 036204 (2009)
CrossRef ADS Google scholar
[10]
L. M. Pecora, Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems, Phys. Rev. E 58(1), 347 (1998)
CrossRef ADS Google scholar
[11]
D. Hansel, G. Mato, and C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48(5), 3470 (1993)
CrossRef ADS Google scholar
[12]
V. N. Belykh and E. Mosekilde, One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures, Phys. Rev. E 54(4), 3196 (1996)
CrossRef ADS Google scholar
[13]
M. Hasler, Yu. Maistrenko, and O. Popovych, Simple example of partial synchronizaiton of chaotic systems, Phys. Rev. E 58(5), 6843 (1998)
CrossRef ADS Google scholar
[14]
Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E 63(2), 026211 (2001)
CrossRef ADS Google scholar
[15]
A. Pikovsky, O. Popovych, and Yu. Maistrenko, Resolving clusters in chaotic ensembles of globally coupled identical oscillators, Phys. Rev. Lett. 87(4), 044102 (2001)
CrossRef ADS Google scholar
[16]
I. A. Heisler, T. Braun, Y. Zhang, G. Hu, and H. A. Cerdeira, Experimental investigation of partial synchronization in coupled chaotic oscillators, Chaos 13(1), 185 (2003)
CrossRef ADS Google scholar
[17]
B. Ao and Z. G. Zheng, Partial synchronization on complex networks, Europhys. Lett. 74(2), 229 (2006)
CrossRef ADS Google scholar
[18]
C. S. Zhou and J. Kurths, Hierarchical synchronization in complex networks with heterogeneous degrees, Chaos 16(1), 015104 (2006)
CrossRef ADS Google scholar
[19]
J. Zhang, Y. Yu, and X. G. Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508 (2017)
CrossRef ADS Google scholar
[20]
M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
CrossRef ADS Google scholar
[21]
E. Basar, Brain Function and Oscillation, New York: Springer, 1998
CrossRef ADS Google scholar
[22]
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small world networks, Nature 393(6684), 440 (1998)
CrossRef ADS Google scholar
[23]
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)
CrossRef ADS Google scholar
[24]
P. M. Gade, Synchronization in coupled map lattices with random nonlocal connectivity, Phys. Rev. E 54(1), 64 (1996)
CrossRef ADS Google scholar
[25]
P. M. Gade and C. K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E 62(5), 6409 (2000)
CrossRef ADS Google scholar
[26]
M. Barahona and L. M. Pecora, Synchronization in Small-World Systems, Phys. Rev. Lett. 89(5), 054101 (2002)
CrossRef ADS Google scholar
[27]
T. Nishikawa, A. E. Motter, Y. C. Lai, and F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 014101 (2003)
CrossRef ADS Google scholar
[28]
A. E. Motter, C. Zhou, and J. Kurths, Weighted networks are more synchronizable: How and why, AIP Conf. Proc. 776, 201 (2005)
CrossRef ADS Google scholar
[29]
X. G. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75(5), 056205 (2007)
CrossRef ADS Google scholar
[30]
C. Fu, H. Zhang, M. Zhan, and X. G. Wang, Synchronous patterns in complex systems? Phys. Rev. E 85(6), 066208 (2012)
CrossRef ADS Google scholar
[31]
Z. He, X. G. Wang, G. Y. Zhang, and M. Zhan, Control for a synchronization-desynchronization switch, Phys. Rev. E 90(1), 012909 (2014)
CrossRef ADS Google scholar
[32]
W. Yang, W. Lin, X. G. Wang, and L. Huang, Synchronization of networked chaotic oscillators under external periodic driving, Phys. Rev. E 91(3), 032912 (2015)
CrossRef ADS Google scholar
[33]
T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry? Phys. Rev. Lett. 117(11), 114101 (2016)
CrossRef ADS Google scholar
[34]
K. Park, L. Huang, and Y. C. Lai, Desynchronization waves in small-world networks, Phys. Rev. E 75(2), 026211 (2007)
CrossRef ADS Google scholar
[35]
F. Sorrentino and E. Ott, Network synchronization of groups, Phys. Rev. E 76(5), 056114 (2007)
CrossRef ADS Google scholar
[36]
V. N. Belykh, G. V. Osipov, V. S. Petrov, J. A. K. Suykens, and J. Vandewalle, Cluster synchronization in oscillatory networks, Chaos 18(3), 037106 (2008)
CrossRef ADS Google scholar
[37]
G. Russo and J. J. E. Slotine, Symmetries, stability, and control in nonlinear systems and networks,Phys. Rev. E 84(4), 041929 (2011)
CrossRef ADS Google scholar
[38]
T. Dahms, J. Lehnert, and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E 86(1), 016202 (2012)
CrossRef ADS Google scholar
[39]
V. Nicosia, M. Valencia, M. Chavez, A. Diaz-Guilera, and V. Latora, Remote synchronization reveals network symmetries and functional modules,Phys. Rev. Lett. 110(17), 174102 (2013)
CrossRef ADS Google scholar
[40]
C. Fu, Z. Deng, L. Huang, and X. G. Wang, Topological control of synchronous patterns in systems of networked chaotic oscillators, Phys. Rev. E 87(3), 032909 (2013)
CrossRef ADS Google scholar
[41]
C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators,Phys. Rev. Lett. 110(6), 064104 (2013)
CrossRef ADS Google scholar
[42]
C. Fu, W. Lin, L. Huang, and X. G. Wang, Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization, Phys. Rev. E 89(5), 052908 (2014)
CrossRef ADS Google scholar
[43]
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun. 5, 4079 (2014)
CrossRef ADS Google scholar
[44]
F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Complete characterization of stability of cluster synchronization in complex dynamical networks, Sci. Adv. 2(4), e1501737 (2016)
CrossRef ADS Google scholar
[45]
D. Hart, K. Bansal, T. E. Murphy, and R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network, Chaos 26(9), 094801 (2016)
CrossRef ADS Google scholar
[46]
T. Nishikawa and A. E. Motter, Network-complement transitions, symmetries, and cluster synchronization, Chaos 26(9), 094818 (2016)
CrossRef ADS Google scholar
[47]
M. T. Schaub, N. O’Clery, Y. N. Billeh, J. C. Delvenne, R. Lambiotte, and M. Barahona, Graph partitions and cluster synchronization in networks of oscillators, Chaos 26(9), 094821 (2016)
CrossRef ADS Google scholar
[48]
F. Sorrentino and L. Pecora, Approximate cluster synchronization in networks with symmetries and parameter mismatches, Chaos 26(9), 094823 (2016)
CrossRef ADS Google scholar
[49]
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
CrossRef ADS Google scholar
[50]
W. Stein, http://www.sagemath.org/sage/ and http:// sage.scipy.org/ for SAGE: Software for Algebra and Geometry Experimentation, 2013
[51]
W. Lin, H. Fan, Y. Wang, H. Ying, and X. G. Wang, Controlling synchronous patterns in complex networks, Phys. Rev. E 93(4), 042209 (2016)
CrossRef ADS Google scholar
[52]
W. Lin, H. Li, H. Ying, and X. G. Wang, Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators, Phys. Rev. E 94(6), 062303 (2016)
CrossRef ADS Google scholar
[53]
J. Sun, E. M. Bollt, and T. Nishikawa, Master stability functions for coupled nearly identical dynamical systems, EPL 85(6), 60011 (2009)
CrossRef ADS Google scholar
[54]
J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87 (1984)
CrossRef ADS Google scholar
[55]
G. Ren, J. Tang, J. Ma, and Y. Xu, Detection of noise effect on coupled neuronal circuits, Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 170 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3014 KB)

Accesses

Citations

Detail

Sections
Recommended

/