
Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures
Hao Yuan, Zhenyu Li
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138103.
Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures
Owing to its outstanding electronic properties, black phosphorus (BP) is considered as a promising material for next-generation optoelectronic devices. In this work, devices based on BP/MXene (Zrn+1CnT2, T= O, F, OH, n = 1, 2) van der Waals (vdW) heterostructures are designed via first-principles calculations. Zrn+1CnT2 compositions with appropriate work functions lead to the formation of Ohmic contact with BP in the vertical direction. Low Schottky barriers are found along the lateral direction in BP/Zr2CF2, BP/Zr2CO2H2, BP/Zr3C2F2, and BP/Zr3C2O2H2 bilayers, and BP/Zr3C2O2 even exhibits Ohmic contact behavior. BP/Zr2CO2 is a semiconducting heterostructure with type-II band alignment, which facilitates the separation of electron-hole pairs. The band structure of BP/Zr2CO2 can be effectively tuned via a perpendicular electric field, and BP is predicted to undergo a transition from donor to acceptor at a 0.4 V/Å electric field. The versatile electronic properties of the BP/MXene heterostructures examined in this work highlight their promising potential for applications in electronics.
BP/MXene / Schottky barrier / type-II band alignment
[1] |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef
ADS
Google scholar
|
[2] |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef
ADS
Google scholar
|
[3] |
S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable transport gap in phosphorene, Nano Lett. 14(10), 5733 (2014)
CrossRef
ADS
Google scholar
|
[4] |
Y. Pan, Y. Wang, M. Ye, R. Quhe, H. Zhong, Z. Song, X. Peng, D. Yu, J. Yang, J. Shi, and J. Lu, Monolayer phosphorene–metal contacts, Chem. Mater. 28(7), 2100 (2016)
CrossRef
ADS
Google scholar
|
[5] |
R. Quhe, Y. Wang, M. Ye, Q. Zhang, J. Yang, P. Lu, M. Lei, and J. Lu, Black phosphorus transistors with van der Waals-type electrical contacts, Nanoscale 9(37), 14047 (2017)
CrossRef
ADS
Google scholar
|
[6] |
J. E. Padilha, A. Fazzio, and A. J. R. da Silva, van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)
CrossRef
ADS
Google scholar
|
[7] |
S. Y. Lee, W. S. Yun, and J. D. Lee, New method to determine the Schottky barrier in few-layer black phosphorus metal contacts, ACS Appl. Mater. Interfaces 9(8), 7873 (2017)
CrossRef
ADS
Google scholar
|
[8] |
M. Farmanbar and G. Brocks, Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer, Phys. Rev. B 91(16), 161304 (2015)
CrossRef
ADS
Google scholar
|
[9] |
T. Musso, P. V. Kumar, A. S. Foster, and J. C. Grossman, Graphene oxide as a promising hole injection layer for MoS2-based electronic devices, ACS Nano 8(11), 11432 (2014)
CrossRef
ADS
Google scholar
|
[10] |
S. McDonnell, A. Azcatl, R. Addou, C. Gong, C. Battaglia, S. Chuang, K. Cho, A. Javey, and R. M. Wallace, Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments, ACS Nano 8(6), 6265 (2014)
CrossRef
ADS
Google scholar
|
[11] |
L. Huang, B. Li, M. Zhong, Z. Wei, and J. Li, Tunable Schottky barrier at MoSe2/metal interfaces with a buffer layer, J. Phys. Chem. C 121(17), 9305 (2017)
CrossRef
ADS
Google scholar
|
[12] |
Y. Liu, P. Stradins, and S. H. Wei, Van der Waals metalsemiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier, Sci. Adv. 2(4), e1600069 (2016)
CrossRef
ADS
Google scholar
|
[13] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[14] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
CrossRef
ADS
Google scholar
|
[15] |
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Twodimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)
CrossRef
ADS
Google scholar
|
[16] |
M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135(43), 15966 (2013)
CrossRef
ADS
Google scholar
|
[17] |
J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund, S. Du, J. Xue, W. Shi, Z. Chai, and Q. Huang, Synthesis and electrochemical properties of two-dimensional hafnium carbide, ACS Nano 11(4), 3841 (2017)
CrossRef
ADS
Google scholar
|
[18] |
X. H. Zha, J. Zhou, Y. Zhou, Q. Huang, J. He, J. S. Francisco, K. Luo, and S. Du, Promising electron mobility and high thermal conductivity in Sc2CT2 (T= F, OH) MXenes, Nanoscale 8(11), 6110 (2016)
CrossRef
ADS
Google scholar
|
[19] |
X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons, Nanoscale 7(38), 16020 (2015)
CrossRef
ADS
Google scholar
|
[20] |
Z. Guo, J. Zhou, L. Zhu, and Z. Sun, MXene: A promising photocatalyst for water splitting, J. Mater. Chem. A 4(29), 11446 (2016)
CrossRef
ADS
Google scholar
|
[21] |
M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)
CrossRef
ADS
Google scholar
|
[22] |
J. Xu, J. Shim, J.H. Park, and S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors, Adv. Funct. Mater. 26(29), 5328 (2016)
CrossRef
ADS
Google scholar
|
[23] |
Y. Liu, H. Xiao, and W. A. III Goddard, Schottkybarrier- free contacts with two-dimensional semiconductors by surface-engineered MXenes, J. Am. Chem. Soc. 138(49), 15853 (2016)
CrossRef
ADS
Google scholar
|
[24] |
Y. Cai, G. Zhang, and Y. W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures, J. Phys. Chem. C 119(24), 13929 (2015)
CrossRef
ADS
Google scholar
|
[25] |
Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode, ACS Nano 8(8), 8292 (2014)
CrossRef
ADS
Google scholar
|
[26] |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[27] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[28] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[29] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[30] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[31] |
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
CrossRef
ADS
Google scholar
|
[32] |
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
CrossRef
ADS
Google scholar
|
[33] |
J. Tersoff, Schottky barrier heights and the continuum of gap states, Phys. Rev. Lett. 52(6), 465 (1984)
CrossRef
ADS
Google scholar
|
[34] |
J. Tersoff, Theory of semiconductor heterojunctions: The role of quantum dipoles, Phys. Rev. B 30(8), 4874 (1984)
CrossRef
ADS
Google scholar
|
[35] |
C. A. Mead and W. G. Spitzer, Fermi level position at metal-semiconductor interfaces, Phys. Rev. 134(3A), A713 (1964)
CrossRef
ADS
Google scholar
|
[36] |
Y. Pan, Y. Dan, Y. Wang, M. Ye, H. Zhang, R. Quhe, X. Zhang, J. Li, W. Guo, L. Yang, and J. Lu, Schottky barriers in bilayer phosphorene transistors, ACS Appl. Mater. Interfaces 9(14), 12694 (2017)
CrossRef
ADS
Google scholar
|
[37] |
X. Zhang, Y. Pan, M. Ye, R. Quhe, Y. Wang, Y. Guo, H. Zhang, Y. Dan, Z. Song, J. Li, J. Yang, W. Guo, and J. Lu, Three-layer phosphorene-metal interfaces, Nano Res. 11(2), 707 (2018)
CrossRef
ADS
Google scholar
|
[38] |
M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang, and S. Yunoki, OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials, Phys. Rev. B 92(7), 075411 (2015)
CrossRef
ADS
Google scholar
|
[39] |
Y. Wang, R. X. Yang, R. Quhe, H. Zhong, L. Cong, M. Ye, Z. Ni, Z. Song, J. Yang, J. Shi, J. Li, and J. Lu, Does p-type ohmic contact exist in WSe2–metal interfaces? Nanoscale 8(2), 1179 (2016)
CrossRef
ADS
Google scholar
|
[40] |
G. H. Lee, S. Kim, S. H. Jhi, and H. J. Lee, Ultimately short ballistic vertical graphene Josephson junctions, Nat. Commun. 6(1), 6181 (2015)
CrossRef
ADS
Google scholar
|
[41] |
X. Ji, J. Zhang, Y. Wang, H. Qian, and Z. Yu, A theoretical model for metal–graphene contact resistance using a DFT–NEGF method, Phys. Chem. Chem. Phys. 15(41), 17883 (2013)
CrossRef
ADS
Google scholar
|
[42] |
Y. Cai, G. Zhang, and Y. W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene, Sci. Rep. 4(1), 6677 (2015)
CrossRef
ADS
Google scholar
|
[43] |
J. Y. Marzin, M. N. Charasse, and B. Sermage, Optical investigation of a new type of valence-band configuration in InxGa1−xAs-GaAs strained superlattices, Phys. Rev. B 31(12), 8298 (1985)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |