
Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy
Jun-Chi Wu, Xu Peng, Yu-Qiao Guo, Hao-Dong Zhou, Ji-Yin Zhao, Ke-Qin Ruan, Wang-Sheng Chu, Changzheng Wu
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138110.
Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.
2D ferromagnetic material / topochemical conversion / magnetocrystalline anisotropy
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronicsand optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef
ADS
Google scholar
|
[3] |
P. Ajayan, P. Kim, and K. Banerjee, Two-dimensional van der Waals materials, Phys. Today 69(9), 38 (2016)
CrossRef
ADS
Google scholar
|
[4] |
S. Rudin and D. C. Mattis, Absence of ferromagnetism in the two-dimensional Hubbard model, Phys. Lett. A 110(5), 273 (1985)
CrossRef
ADS
Google scholar
|
[5] |
K. Xu, X. Li, P. Chen, D. Zhou, C. Wu, Y. Guo, L. Zhang, J. Zhao, X. Wu, and Y. Xie, Hydrogen dangling bonds induce ferromagnetism in two-dimensional metalfree graphitic-C3N4 nanosheets, Chem. Sci. 6(1), 283 (2015)
CrossRef
ADS
Google scholar
|
[6] |
X. Zhu, Y. Guo, H. Cheng, J. Dai, X. An, J. Zhao, K. Tian, S. Wei, X. Cheng Zeng, C. Wu, and Y. Xie, Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption, Nat. Commun. 7, 11210 (2016)
CrossRef
ADS
Google scholar
|
[7] |
L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, and S. Wei, Vacancy-induced ferromagnetism of MoS2 nanosheets, J. Am. Chem. Soc. 137(7), 2622 (2015)
CrossRef
ADS
Google scholar
|
[8] |
B. Li, T. Xing, M. Zhong, L. Huang, N. Lei, J. Zhang, J. Li, and Z. Wei, A two-dimensional Fe-doped SnS2 magnetic semiconductor, Nat. Commun. 8(1), 1958 (2017)
CrossRef
ADS
Google scholar
|
[9] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. Mcguire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef
ADS
Google scholar
|
[10] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef
ADS
Google scholar
|
[11] |
J. L. Miller, Ancient clues help quantify modern methane, Phys. Today 70, 16 (2017)
CrossRef
ADS
Google scholar
|
[12] |
H. T. Jeng and G. Y. Guo, First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe3O4, Phys. Rev. B 65(9), 094429 (2002)
CrossRef
ADS
Google scholar
|
[13] |
K. Dwight and N. Menyuk, Magnetic properties of and the canted spin problem, Phys. Rev. 119(5), 1470 (1960)
CrossRef
ADS
Google scholar
|
[14] |
T. Jeng and G. Y. Guo, First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe3O4, Phys. Rev. B 65(9), 094429 (2002)
CrossRef
ADS
Google scholar
|
[15] |
X. Peng, Y. Guo, Q. Yin, J. Wu, J. Zhao, C. Wang, S. Tao, W. Chu, C. Wu, and Y. Xie, Double-exchange effect in two-dimensional MnO2 nanomaterials, J. Am. Chem. Soc. 139(14), 5242 (2017)
CrossRef
ADS
Google scholar
|
[16] |
W. Cheng, J. He, T. Yao, Z. Sun, Y. Jiang, Q. Liu, S. Jiang, F. Hu, Z. Xie, B. He, W. Yan, and S. Wei, Half-unit-cell α-Fe2O3 semiconductor nanosheets with intrinsic and robust ferromagnetism, J. Am. Chem. Soc. 136(29), 10393 (2014)
CrossRef
ADS
Google scholar
|
[17] |
Y. Sun, Q. Liu, S. Gao, H. Cheng, F. Lei, Z. Sun, Y. Jiang, H. Su, S. Wei, and Y. Xie, Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation, Nat. Commun. 4, 2899 (2013)
CrossRef
ADS
Google scholar
|
[18] |
L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, High-performance flexible electrochromic device based on facile semiconductorto-metal transition realized by WO3·2H2O ultrathin nanosheets, Sci. Rep. 3(1), 1936 (2013)
CrossRef
ADS
Google scholar
|
[19] |
G. Srinivasan and M. S. Seehra, Magnetic properties of Mn3O4 and a solution of the canted-spin problem, Phys. Rev. B 28(1), 1 (1983)
CrossRef
ADS
Google scholar
|
[20] |
L. Ren, S. Wu, M. Yang, W. Zhou, and S. Li, Magnetic properties of Mn3O4 film under compressive stress grown on MgAl2O4 (001) by molecular beam epitaxy, J. Appl. Phys. 114(5), 053907 (2013)
CrossRef
ADS
Google scholar
|
[21] |
Y. Yafet and C. Kittel, Antiferromagnetic arrangements in ferrites, Phys. Rev. 87(2), 290 (1952)
CrossRef
ADS
Google scholar
|
[22] |
L. Ren, M. Yang, W. Zhou, S. Wu, and S. Li, Influence of stress and defect on magnetic properties of Mn3O4 films grown on MgAl2O4 (001) by molecular beam epitaxy, J. Phys. Chem. C 118(1), 243 (2014)
CrossRef
ADS
Google scholar
|
[23] |
L. Ren, W. Zhou, Y. Wang, M. Meng, S. Wu, and S. Li, Magnetic properties of Mn3O4 film with a coexistence of two preferential orientations, J. Appl. Phys. 116(2), 023906 (2014)
CrossRef
ADS
Google scholar
|
[24] |
U. H. Pi, K. Won Kim, J. Y. Bae, S. C. Lee, Y. J. Cho, K. S. Kim, and S. Seo, Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer, Appl. Phys. Lett. 97(16), 162507 (2010)
CrossRef
ADS
Google scholar
|
[25] |
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |