Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy

Jun-Chi Wu, Xu Peng, Yu-Qiao Guo, Hao-Dong Zhou, Ji-Yin Zhao, Ke-Qin Ruan, Wang-Sheng Chu, Changzheng Wu

Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138110.

PDF(22798 KB)
PDF(22798 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138110. DOI: 10.1007/s11467-018-0753-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy

Author information +
History +

Abstract

Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.

Keywords

2D ferromagnetic material / topochemical conversion / magnetocrystalline anisotropy

Cite this article

Download citation ▾
Jun-Chi Wu, Xu Peng, Yu-Qiao Guo, Hao-Dong Zhou, Ji-Yin Zhao, Ke-Qin Ruan, Wang-Sheng Chu, Changzheng Wu. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy. Front. Phys., 2018, 13(3): 138110 https://doi.org/10.1007/s11467-018-0753-7

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronicsand optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[3]
P. Ajayan, P. Kim, and K. Banerjee, Two-dimensional van der Waals materials, Phys. Today 69(9), 38 (2016)
CrossRef ADS Google scholar
[4]
S. Rudin and D. C. Mattis, Absence of ferromagnetism in the two-dimensional Hubbard model, Phys. Lett. A 110(5), 273 (1985)
CrossRef ADS Google scholar
[5]
K. Xu, X. Li, P. Chen, D. Zhou, C. Wu, Y. Guo, L. Zhang, J. Zhao, X. Wu, and Y. Xie, Hydrogen dangling bonds induce ferromagnetism in two-dimensional metalfree graphitic-C3N4 nanosheets, Chem. Sci. 6(1), 283 (2015)
CrossRef ADS Google scholar
[6]
X. Zhu, Y. Guo, H. Cheng, J. Dai, X. An, J. Zhao, K. Tian, S. Wei, X. Cheng Zeng, C. Wu, and Y. Xie, Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption, Nat. Commun. 7, 11210 (2016)
CrossRef ADS Google scholar
[7]
L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, and S. Wei, Vacancy-induced ferromagnetism of MoS2 nanosheets, J. Am. Chem. Soc. 137(7), 2622 (2015)
CrossRef ADS Google scholar
[8]
B. Li, T. Xing, M. Zhong, L. Huang, N. Lei, J. Zhang, J. Li, and Z. Wei, A two-dimensional Fe-doped SnS2 magnetic semiconductor, Nat. Commun. 8(1), 1958 (2017)
CrossRef ADS Google scholar
[9]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. Mcguire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS Google scholar
[10]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS Google scholar
[11]
J. L. Miller, Ancient clues help quantify modern methane, Phys. Today 70, 16 (2017)
CrossRef ADS Google scholar
[12]
H. T. Jeng and G. Y. Guo, First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe3O4, Phys. Rev. B 65(9), 094429 (2002)
CrossRef ADS Google scholar
[13]
K. Dwight and N. Menyuk, Magnetic properties of and the canted spin problem, Phys. Rev. 119(5), 1470 (1960)
CrossRef ADS Google scholar
[14]
T. Jeng and G. Y. Guo, First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe3O4, Phys. Rev. B 65(9), 094429 (2002)
CrossRef ADS Google scholar
[15]
X. Peng, Y. Guo, Q. Yin, J. Wu, J. Zhao, C. Wang, S. Tao, W. Chu, C. Wu, and Y. Xie, Double-exchange effect in two-dimensional MnO2 nanomaterials, J. Am. Chem. Soc. 139(14), 5242 (2017)
CrossRef ADS Google scholar
[16]
W. Cheng, J. He, T. Yao, Z. Sun, Y. Jiang, Q. Liu, S. Jiang, F. Hu, Z. Xie, B. He, W. Yan, and S. Wei, Half-unit-cell α-Fe2O3 semiconductor nanosheets with intrinsic and robust ferromagnetism, J. Am. Chem. Soc. 136(29), 10393 (2014)
CrossRef ADS Google scholar
[17]
Y. Sun, Q. Liu, S. Gao, H. Cheng, F. Lei, Z. Sun, Y. Jiang, H. Su, S. Wei, and Y. Xie, Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation, Nat. Commun. 4, 2899 (2013)
CrossRef ADS Google scholar
[18]
L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, High-performance flexible electrochromic device based on facile semiconductorto-metal transition realized by WO3·2H2O ultrathin nanosheets, Sci. Rep. 3(1), 1936 (2013)
CrossRef ADS Google scholar
[19]
G. Srinivasan and M. S. Seehra, Magnetic properties of Mn3O4 and a solution of the canted-spin problem, Phys. Rev. B 28(1), 1 (1983)
CrossRef ADS Google scholar
[20]
L. Ren, S. Wu, M. Yang, W. Zhou, and S. Li, Magnetic properties of Mn3O4 film under compressive stress grown on MgAl2O4 (001) by molecular beam epitaxy, J. Appl. Phys. 114(5), 053907 (2013)
CrossRef ADS Google scholar
[21]
Y. Yafet and C. Kittel, Antiferromagnetic arrangements in ferrites, Phys. Rev. 87(2), 290 (1952)
CrossRef ADS Google scholar
[22]
L. Ren, M. Yang, W. Zhou, S. Wu, and S. Li, Influence of stress and defect on magnetic properties of Mn3O4 films grown on MgAl2O4 (001) by molecular beam epitaxy, J. Phys. Chem. C 118(1), 243 (2014)
CrossRef ADS Google scholar
[23]
L. Ren, W. Zhou, Y. Wang, M. Meng, S. Wu, and S. Li, Magnetic properties of Mn3O4 film with a coexistence of two preferential orientations, J. Appl. Phys. 116(2), 023906 (2014)
CrossRef ADS Google scholar
[24]
U. H. Pi, K. Won Kim, J. Y. Bae, S. C. Lee, Y. J. Cho, K. S. Kim, and S. Seo, Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer, Appl. Phys. Lett. 97(16), 162507 (2010)
CrossRef ADS Google scholar
[25]
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(22798 KB)

Accesses

Citations

Detail

Sections
Recommended

/