Theoretical studies of superconductivity in doped BaCoSO

Shengshan Qin , Yinxiang Li , Qiang Zhang , Congcong Le , Jiangping Hu

Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 137502

PDF (2931KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 137502 DOI: 10.1007/s11467-018-0745-7
RESEARCH ARTICLE

Theoretical studies of superconductivity in doped BaCoSO

Author information +
History +
PDF (2931KB)

Abstract

We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three t2g orbitals have very different superconducting form factors in momentum space. In particular, th intra-orbital pairing of the dx2y2 orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

Keywords

unconventional superconductivity / pairing symmetry

Cite this article

Download citation ▾
Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO. Front. Phys., 2018, 13(3): 137502 DOI:10.1007/s11467-018-0745-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. G. Bednorz and K. A. Muller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condens. Matter 64(2), 189 (1986)

[2]

Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05–0.12) with Tc= 26 K, JACS 130(11), 3296 (2008)

[3]

A. Damascelli, Z. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate supercon-ductors, Rev. Mod. Phys. 75(2), 473 (2003)

[4]

P. C. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87(3), 855 (2015)

[5]

O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)

[6]

J. P. Hu, Identifying the genes of unconventional high temperature superconductors, Sci. Bull. 61(7), 561 (2016)

[7]

J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2(1), 381 (2012)

[8]

J. P. Hu, C. C. Le, and X. X. Wu, Predicting unconventional high-temperature superconductors in trigonal bipyramidal coordinations, Phys. Rev. X 5(4), 041012 (2015)

[9]

J. P. Hu and C. C. Le, A possible new family of unconventional high temperature superconductors, Sci. Bull. 62(3), 212 (2017)

[10]

E. J. Salter, J. N. Blandy, and S. J. Clarke, Crystal and magnetic structures of the oxide sulfides CaCoSO and BaCoSO, Inorg. Chem. 55(4), 1697 (2016)

[11]

M. Valldor, U. K. Rossler, Y. Prots, C. Y. Kuo, J. C. Chiang, Z. Hu, T. W. Pi, R. Kniep, and L. H. Tjeng, Synthesis and characterization of Ba[CoSO]: Magnetic complexity in the presence of chalcogen ordering, Chemistry 21(30), 10821 (2015)

[12]

C. C. Le, S. S. Qin, and J. P. Hu, Electronic physics and possible superconductivity in layered orthorhombic cobalt oxychalcogenides, arXiv: 1612.03470 (2016)

[13]

K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx, Phys. Rev. Lett. 101(8), 087004 (2008)

[14]

D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides,Adv. Phys. 59(6), 803 (2010)

[15]

I. I. Mazin, Superconductivity gets an iron boost, Nature 464(7286), 183 (2010)

[16]

P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)

[17]

G. Kotliar and J. L. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)

[18]

K. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)

[19]

A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, New J. Phys. 12(7), 073030 (2010)

[20]

X. X. Wu, J. Yuan, Y. Liang, H. Fan, and J. P. Hu, g-wave pairing in BiS2 superconductors, EPL 108(2), 27006 (2014)

[21]

D. J. Singh and M. H. Du, Density functional study of LaFeAsO1-xFx: A low carrier density superconductor near itinerant magnetism, Phys. Rev. Lett. 100, 237003 (2008)

[22]

C. Cao, P. J. Hirschfeld, and H. P. Cheng, Proximity of antiferromagnetism and superconductivity in LaFeAsO1−xFx: Effective Hamiltonian from ab initio studies,Phys. Rev. B 77(22), 220506 (2008)

[23]

T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X.Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the ironbased K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett. 106(18), 187001 (2011)

[24]

Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A= K, Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)

[25]

S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of hightemperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)

[26]

W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schonhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)

[27]

R. Thomale, C. Platt, J. P. Hu, C. Honerkamp, and B. A. Bernevig, Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors, Phys. Rev. B 80(18), 180505 (2009)

[28]

F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D. H. Lee, Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAsbased high-temperature superconductor, Phys. Rev. Lett. 102(4), 047005 (2009)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2931KB)

917

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/