Theoretical studies of superconductivity in doped BaCoSO

Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu

PDF(2931 KB)
PDF(2931 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 137502. DOI: 10.1007/s11467-018-0745-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical studies of superconductivity in doped BaCoSO

Author information +
History +

Abstract

We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three t2g orbitals have very different superconducting form factors in momentum space. In particular, th intra-orbital pairing of the dx2y2 orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

Keywords

unconventional superconductivity / pairing symmetry

Cite this article

Download citation ▾
Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO. Front. Phys., 2018, 13(3): 137502 https://doi.org/10.1007/s11467-018-0745-7

References

[1]
J. G. Bednorz and K. A. Muller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condens. Matter 64(2), 189 (1986)
CrossRef ADS Google scholar
[2]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05–0.12) with Tc= 26 K, JACS 130(11), 3296 (2008)
[3]
A. Damascelli, Z. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate supercon-ductors, Rev. Mod. Phys. 75(2), 473 (2003)
CrossRef ADS Google scholar
[4]
P. C. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87(3), 855 (2015)
CrossRef ADS Google scholar
[5]
O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)
CrossRef ADS Google scholar
[6]
J. P. Hu, Identifying the genes of unconventional high temperature superconductors, Sci. Bull. 61(7), 561 (2016)
CrossRef ADS Google scholar
[7]
J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2(1), 381 (2012)
CrossRef ADS Google scholar
[8]
J. P. Hu, C. C. Le, and X. X. Wu, Predicting unconventional high-temperature superconductors in trigonal bipyramidal coordinations, Phys. Rev. X 5(4), 041012 (2015)
CrossRef ADS Google scholar
[9]
J. P. Hu and C. C. Le, A possible new family of unconventional high temperature superconductors, Sci. Bull. 62(3), 212 (2017)
CrossRef ADS Google scholar
[10]
E. J. Salter, J. N. Blandy, and S. J. Clarke, Crystal and magnetic structures of the oxide sulfides CaCoSO and BaCoSO, Inorg. Chem. 55(4), 1697 (2016)
CrossRef ADS Google scholar
[11]
M. Valldor, U. K. Rossler, Y. Prots, C. Y. Kuo, J. C. Chiang, Z. Hu, T. W. Pi, R. Kniep, and L. H. Tjeng, Synthesis and characterization of Ba[CoSO]: Magnetic complexity in the presence of chalcogen ordering, Chemistry 21(30), 10821 (2015)
CrossRef ADS Google scholar
[12]
C. C. Le, S. S. Qin, and J. P. Hu, Electronic physics and possible superconductivity in layered orthorhombic cobalt oxychalcogenides, arXiv: 1612.03470 (2016)
[13]
K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx, Phys. Rev. Lett. 101(8), 087004 (2008)
CrossRef ADS Google scholar
[14]
D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides,Adv. Phys. 59(6), 803 (2010)
CrossRef ADS Google scholar
[15]
I. I. Mazin, Superconductivity gets an iron boost, Nature 464(7286), 183 (2010)
CrossRef ADS Google scholar
[16]
P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)
CrossRef ADS Google scholar
[17]
G. Kotliar and J. L. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
CrossRef ADS Google scholar
[18]
K. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)
CrossRef ADS Google scholar
[19]
A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, New J. Phys. 12(7), 073030 (2010)
CrossRef ADS Google scholar
[20]
X. X. Wu, J. Yuan, Y. Liang, H. Fan, and J. P. Hu, g-wave pairing in BiS2 superconductors, EPL 108(2), 27006 (2014)
CrossRef ADS Google scholar
[21]
D. J. Singh and M. H. Du, Density functional study of LaFeAsO1-xFx: A low carrier density superconductor near itinerant magnetism, Phys. Rev. Lett. 100, 237003 (2008)
CrossRef ADS Google scholar
[22]
C. Cao, P. J. Hirschfeld, and H. P. Cheng, Proximity of antiferromagnetism and superconductivity in LaFeAsO1−xFx: Effective Hamiltonian from ab initio studies,Phys. Rev. B 77(22), 220506 (2008)
CrossRef ADS Google scholar
[23]
T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X.Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the ironbased K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett. 106(18), 187001 (2011)
CrossRef ADS Google scholar
[24]
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A= K, Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
CrossRef ADS Google scholar
[25]
S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of hightemperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
CrossRef ADS Google scholar
[26]
W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schonhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)
CrossRef ADS Google scholar
[27]
R. Thomale, C. Platt, J. P. Hu, C. Honerkamp, and B. A. Bernevig, Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors, Phys. Rev. B 80(18), 180505 (2009)
CrossRef ADS Google scholar
[28]
F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D. H. Lee, Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAsbased high-temperature superconductor, Phys. Rev. Lett. 102(4), 047005 (2009)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2931 KB)

Accesses

Citations

Detail

Sections
Recommended

/