Theoretical studies of superconductivity in doped BaCoSO
Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu
Theoretical studies of superconductivity in doped BaCoSO
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three t2g orbitals have very different superconducting form factors in momentum space. In particular, th intra-orbital pairing of the dx2–y2 orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.
unconventional superconductivity / pairing symmetry
[1] |
J. G. Bednorz and K. A. Muller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condens. Matter 64(2), 189 (1986)
CrossRef
ADS
Google scholar
|
[2] |
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05–0.12) with Tc= 26 K, JACS 130(11), 3296 (2008)
|
[3] |
A. Damascelli, Z. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate supercon-ductors, Rev. Mod. Phys. 75(2), 473 (2003)
CrossRef
ADS
Google scholar
|
[4] |
P. C. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87(3), 855 (2015)
CrossRef
ADS
Google scholar
|
[5] |
O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)
CrossRef
ADS
Google scholar
|
[6] |
J. P. Hu, Identifying the genes of unconventional high temperature superconductors, Sci. Bull. 61(7), 561 (2016)
CrossRef
ADS
Google scholar
|
[7] |
J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2(1), 381 (2012)
CrossRef
ADS
Google scholar
|
[8] |
J. P. Hu, C. C. Le, and X. X. Wu, Predicting unconventional high-temperature superconductors in trigonal bipyramidal coordinations, Phys. Rev. X 5(4), 041012 (2015)
CrossRef
ADS
Google scholar
|
[9] |
J. P. Hu and C. C. Le, A possible new family of unconventional high temperature superconductors, Sci. Bull. 62(3), 212 (2017)
CrossRef
ADS
Google scholar
|
[10] |
E. J. Salter, J. N. Blandy, and S. J. Clarke, Crystal and magnetic structures of the oxide sulfides CaCoSO and BaCoSO, Inorg. Chem. 55(4), 1697 (2016)
CrossRef
ADS
Google scholar
|
[11] |
M. Valldor, U. K. Rossler, Y. Prots, C. Y. Kuo, J. C. Chiang, Z. Hu, T. W. Pi, R. Kniep, and L. H. Tjeng, Synthesis and characterization of Ba[CoSO]: Magnetic complexity in the presence of chalcogen ordering, Chemistry 21(30), 10821 (2015)
CrossRef
ADS
Google scholar
|
[12] |
C. C. Le, S. S. Qin, and J. P. Hu, Electronic physics and possible superconductivity in layered orthorhombic cobalt oxychalcogenides, arXiv: 1612.03470 (2016)
|
[13] |
K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx, Phys. Rev. Lett. 101(8), 087004 (2008)
CrossRef
ADS
Google scholar
|
[14] |
D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides,Adv. Phys. 59(6), 803 (2010)
CrossRef
ADS
Google scholar
|
[15] |
I. I. Mazin, Superconductivity gets an iron boost, Nature 464(7286), 183 (2010)
CrossRef
ADS
Google scholar
|
[16] |
P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)
CrossRef
ADS
Google scholar
|
[17] |
G. Kotliar and J. L. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
CrossRef
ADS
Google scholar
|
[18] |
K. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)
CrossRef
ADS
Google scholar
|
[19] |
A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, New J. Phys. 12(7), 073030 (2010)
CrossRef
ADS
Google scholar
|
[20] |
X. X. Wu, J. Yuan, Y. Liang, H. Fan, and J. P. Hu, g-wave pairing in BiS2 superconductors, EPL 108(2), 27006 (2014)
CrossRef
ADS
Google scholar
|
[21] |
D. J. Singh and M. H. Du, Density functional study of LaFeAsO1-xFx: A low carrier density superconductor near itinerant magnetism, Phys. Rev. Lett. 100, 237003 (2008)
CrossRef
ADS
Google scholar
|
[22] |
C. Cao, P. J. Hirschfeld, and H. P. Cheng, Proximity of antiferromagnetism and superconductivity in LaFeAsO1−xFx: Effective Hamiltonian from ab initio studies,Phys. Rev. B 77(22), 220506 (2008)
CrossRef
ADS
Google scholar
|
[23] |
T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X.Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the ironbased K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett. 106(18), 187001 (2011)
CrossRef
ADS
Google scholar
|
[24] |
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A= K, Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
CrossRef
ADS
Google scholar
|
[25] |
S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of hightemperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
CrossRef
ADS
Google scholar
|
[26] |
W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schonhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)
CrossRef
ADS
Google scholar
|
[27] |
R. Thomale, C. Platt, J. P. Hu, C. Honerkamp, and B. A. Bernevig, Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors, Phys. Rev. B 80(18), 180505 (2009)
CrossRef
ADS
Google scholar
|
[28] |
F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D. H. Lee, Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAsbased high-temperature superconductor, Phys. Rev. Lett. 102(4), 047005 (2009)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |