Chimera states in Gaussian coupled map lattices

Xiao-Wen Li, Ran Bi, Yue-Xiang Sun, Shuo Zhang, Qian-Qian Song

PDF(831 KB)
PDF(831 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 130502. DOI: 10.1007/s11467-017-0729-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Chimera states in Gaussian coupled map lattices

Author information +
History +

Abstract

We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

Keywords

chimera state / coupled map lattices / nonlocal coupling

Cite this article

Download citation ▾
Xiao-Wen Li, Ran Bi, Yue-Xiang Sun, Shuo Zhang, Qian-Qian Song. Chimera states in Gaussian coupled map lattices. Front. Phys., 2018, 13(2): 130502 https://doi.org/10.1007/s11467-017-0729-z

References

[1]
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlin. Phenom. Complex Syst. 5(4), 380 (2002)
[2]
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef ADS Google scholar
[3]
D. M. Abrams and S. H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators, Int. J. Bifurcat. Chaos 16(01), 21 (2006)
CrossRef ADS Google scholar
[4]
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
CrossRef ADS Google scholar
[5]
A. Pikovsky and M. Rosenblum, Partially integrable dynamics of hierarchical populations of coupled oscillators, Phys. Rev. Lett. 101(26), 264103 (2008)
CrossRef ADS Google scholar
[6]
C. R. Laing, Chimera states in heterogeneous networks, Chaos 19(1), 013113 (2009)
CrossRef ADS Google scholar
[7]
S. i. Shima and Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E 69(3), 036213 (2004)
CrossRef ADS Google scholar
[8]
E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
CrossRef ADS Google scholar
[9]
G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
CrossRef ADS Google scholar
[10]
C. H. Tian, X. Y. Zhang, Z. H. Wang, and Z. H. Liu, Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling, Front. Phys. 12(3), 128904 (2017)
CrossRef ADS Google scholar
[11]
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
[12]
Y. H. Ma, L.Q. Huang, C. M. Sun, and X. W. Li, Experimental system of coupled map lattices, Front. Phys. 10(3), 100504 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(831 KB)

Accesses

Citations

Detail

Sections
Recommended

/