
Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice
A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, R. Senesi
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136101.
Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice
The hydrogen mean force from experimental neutron Compton profiles is derived using deep inelastic neutron scattering on amorphous and polycrystalline ice. The formalism of mean force is extended to probe its sensitivity to anharmonicity in the hydrogen-nucleus effective potential. The shape of the mean force for amorphous and polycrystalline ice is primarily determined by the anisotropy of the underlying quasi-harmonic effective potential. The data from amorphous ice show an additional curvature reflecting the more pronounced anharmonicity of the effective potential with respect to that of ice Ih.
potential of mean force / neutron Compton profile / nuclear quantum effects / path integral representation / anharmonicity
[1] |
M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and T. E. Markland, Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges, Chem. Rev. 116(5), 7259 (2016)
CrossRef
ADS
Google scholar
|
[2] |
J. M. F. Gunn, C. Andreani, and J. Mayers, A new approach to impulsive neutron scattering, J. Phys. C Solid State Phys. 19(36), L835 (1986)
CrossRef
ADS
Google scholar
|
[3] |
C. Andreani, D. Colognesi, J. Mayers, G. F. Reiter, and R. Senesi, Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering, Adv. Phys. 54(5), 377 (2005)
CrossRef
ADS
Google scholar
|
[4] |
G. B. West, Electron scattering from atoms, nuclei and nucleons, Phys. Rev. C 18, 263 (1975)
CrossRef
ADS
Google scholar
|
[5] |
G. Reiter and R. Silver, Measurement of interionic potentials in solids using deep-inelastic neutron scattering, Phys. Rev. Lett. 54(10), 1047 (1985)
CrossRef
ADS
Google scholar
|
[6] |
G. I. Watson, Neutron Compton scattering, J. Phys.: Condens. Matter 8(33), 5955 (1996)
CrossRef
ADS
Google scholar
|
[7] |
C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, and F. Fernandez-Alonso, Electron-volt neutron spectroscopy: beyond fundamental systems, Adv. Phys. 66(1), 1 (2017)
CrossRef
ADS
Google scholar
|
[8] |
J. A. Morrone and R. Car, Nuclear quantum effects in water, Phys. Rev. Lett. 101(1), 017801 (2008)
CrossRef
ADS
Google scholar
|
[9] |
R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55(22), 2471 (1985)D. Marx and M. Parrinello, Ab initio path integral molecular dynamics, Z. Phys. B 95(2), 143 (1994)
CrossRef
ADS
Google scholar
|
[10] |
D. Marx and M. Parrinello, Ab initio path integral molecular dynamics: Basic ideas, J. Chem. Phys. 104(11), 4077 (1996)
CrossRef
ADS
Google scholar
|
[11] |
L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Displaced path integral formulation for the momentum distribution of quantum particles, Phys. Rev. Lett. 105(11), 110602 (2010)
CrossRef
ADS
Google scholar
|
[12] |
B. Cheng, J. Behler, and M. Ceriotti, Nuclear quantum effects in water at the triple point: Using theory as a link between experiments, J. Phys. Chem. Lett. 7(12), 2210 (2016)
CrossRef
ADS
Google scholar
|
[13] |
C. Andreani, G. Romanelli, and R. Senesi, A Combined INS and DINS study of proton quantum dynamics of ice and water across the triple point and in the supercritical phase, Chem. Phys. 427, 106 (2013)
CrossRef
ADS
Google scholar
|
[14] |
R. Senesi, G. Romanelli, M. A. Adams, and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427, 111 (2013)
CrossRef
ADS
Google scholar
|
[15] |
D. Flammini, A. Pietropaolo, R. Senesi, C. Andreani, F. McBride, A. Hodgson, M. A. Adams, L. Lin, and R. Car, Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data, J. Chem. Phys. 136(2), 024504 (2012)
CrossRef
ADS
Google scholar
|
[16] |
C. Pantalei, A. Pietropaolo, R. Senesi, S. Imberti, C. Andreani, J. Mayers, C. Burnham, and G. Reiter, Proton momentum distribution of liquid water from room temperature to the supercritical phase, Phys. Rev. Lett. 100(17), 177801 (2008)
CrossRef
ADS
Google scholar
|
[17] |
C. Andreani, G. Romanelli, and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7(12), 2216 (2016)
CrossRef
ADS
Google scholar
|
[18] |
R. P. Feynman, Forces in molecules, Phys. Rev. 56(4), 340 (1939)
CrossRef
ADS
Google scholar
|
[19] |
R. Senesi, Direct kinetic energy extraction from neutron compton profiles, Nucl. Instrum. Methods Phys. Res. 661(1), 70 (2012)
CrossRef
ADS
Google scholar
|
[20] |
V. F. Sears, Scaling and final-state interactions in deepinelastic neutron scattering, Phys. Rev. B 30(1), 44 (1984)
CrossRef
ADS
Google scholar
|
[21] |
J. Mayers, User Guide to VESUVIO Data Analysis Programs for Powders and Liquids, Technical Report RALTR-2011-003, STFC (2011)
CrossRef
ADS
Google scholar
|
[22] |
R. Senesi, C. Andreani, Z. Bowden, D. Colognesi, E. Degiorgi, A. L. Fielding, J. Mayers, M. Nardone, J. Norris, M. Praitano, N. J. Rhodes, W. G. Stirling, J. Tomkinson, and C. Uden, VESUVIO: A novel instrument for performing spectroscopic studies in condensed matter with eV neutrons at the ISIS facility, Physica B276–278, 200 (2000)
|
[23] |
A. Pietropaolo and R. Senesi, Electronvolt neutron spectrometers, Phys. Rep. 508(3), 45 (2011)
|
[24] |
V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, and K. Kremer, Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations, Macromolecules 39(19), 6708 (2006)
CrossRef
ADS
Google scholar
|
[25] |
D. Trzesniak, A. P. E. Kunz, and W. F. van Gunsteren, A comparison of methods to compute the potential of mean force, Chem Phys Chem 8(1), 162 (2007)
CrossRef
ADS
Google scholar
|
[26] |
D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67(2), 279 (1995)
CrossRef
ADS
Google scholar
|
[27] |
S. K. Kauffmann and J. Rafelski, Analytic study of a sequence of path integral approximations for simple quantum systems at low temperature, Z. Phys. C 24(2), 157 (1984)
CrossRef
ADS
Google scholar
|
[28] |
T. W. Whitfield and J. E. Straub, Uncertainty of path integral averages at low temperature, J. Chem. Phys. 115(15), 6834 (2001)
CrossRef
ADS
Google scholar
|
[29] |
J. A. Morrone, V. Srinivasan, D. Sebastiani, and R. Car, Proton momentum distribution in water: An open path integral molecular dynamics study, J. Chem. Phys. 126(23), 234504 (2007)
CrossRef
ADS
Google scholar
|
[30] |
Y. Marechal, The Hydrogen Bond and the Water Molecule- The Physics and Chemistry of Water, Aqueous and Bio-Media, Elsevier Science, 2006
|
[31] |
P. M. Morse, Diatomic molecules according to the wave mechanics (II): Vibrational levels, Phys. Rev. 34(1), 57 (1929)
CrossRef
ADS
Google scholar
|
[32] |
J. P. Dahl and M. Springborg, The Morse oscillator in position space, momentum space, and phase space, J. Chem. Phys. 88(7), 4535 (1988)
CrossRef
ADS
Google scholar
|
[33] |
M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover Publications Inc., 1970
|
[34] |
L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Momentum distribution, vibrational dynamics and the potential of mean force in ice, Phys. Rev. B 83(22), 220302 (2011)
CrossRef
ADS
Google scholar
|
[35] |
T. Iijima, Anharmonicity of the OH...O hydrogen bond in liquid water, Chem. Phys. Lett. 217(5–6), 503 (1994)
CrossRef
ADS
Google scholar
|
[36] |
R. H. McKenzie, C. Bekker, B. Athokpam, and S. G. Ramesh, Effect of quantum nuclear motion on hydrogen bonding, J. Chem. Phys. 140(17), 174508 (2014)
CrossRef
ADS
Google scholar
|
[37] |
D. Hadzi and S. Bratos, in: The Hydrogen Bond: Recent Developments in Theory and Experiments, Vol. II, Structure and Spectroscopy, Eds. P. Schuster, G. Zundel, and C. Sandorfy, Amsterdam: North Holland Publishing Company, 1976
|
[38] |
M. Barbatti and M. A. C. Nascimento, Vibrational analysis of small Hn+ hydrogen clusters, J. Chem. Phys. 119(11), 5444 (2003)
CrossRef
ADS
Google scholar
|
[39] |
X. Zhang, S. Chen, and J. Li, Hydrogen-bond potential for ice VIII-X phase transition, Sci. Rep. 6(1), 37161 (2016)
CrossRef
ADS
Google scholar
|
[40] |
H. J. Bakker, H.K. Nienhuys, G. Gallot, N. Lascoux, G. M. Gale, J.C. Leicknam, and S. Bratos, Transient absorption of vibrationally excited water,J. Chem. Phys. 116(6), 2592 (2002)
CrossRef
ADS
Google scholar
|
[41] |
A. Parmentier, J. J. Shephard, G. Romanelli, R. Senesi, C. G. Salzmann, and C. Andreani, Evolution of hydrogen dynamics in amorphous ice with density, J. Chem. Phys. Lett. 6(11), 2038 (2015)
CrossRef
ADS
Google scholar
|
[42] |
J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Structures of high and low density amorphous ice by neutron diffraction, Phys. Rev. Lett. 88(22), 225503 (2002)
CrossRef
ADS
Google scholar
|
[43] |
J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Structure of a new dense amorphous ice, Phys. Rev. Lett. 89(20), 205503 (2002)
CrossRef
ADS
Google scholar
|
[44] |
J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater, and C. G. Salzmann, Is high-density amorphous ice simply a ‘derailed’ state along the ice I to ice IV pathway? J. Phys. Phys. Lett. 8, 1645 (2017)
CrossRef
ADS
Google scholar
|
[45] |
M. Guthrie, C. A. Tulk, C. J. Benmore, and D. D. Klug, A structural study of very high-density amorphous ice, Chem. Phys. Lett. 397(4–6), 335 (2004)
CrossRef
ADS
Google scholar
|
[46] |
A. Shalit, F. Perakis, and P. Hamm, Communication: Disorder-suppressed vibrational relaxation in vapordeposited high-density amorphous ice,J. Chem. Phys. 140(15), 151102 (2014)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |