Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice

A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, R. Senesi

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136101.

PDF(2654 KB)
PDF(2654 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136101. DOI: 10.1007/s11467-017-0724-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice

Author information +
History +

Abstract

The hydrogen mean force from experimental neutron Compton profiles is derived using deep inelastic neutron scattering on amorphous and polycrystalline ice. The formalism of mean force is extended to probe its sensitivity to anharmonicity in the hydrogen-nucleus effective potential. The shape of the mean force for amorphous and polycrystalline ice is primarily determined by the anisotropy of the underlying quasi-harmonic effective potential. The data from amorphous ice show an additional curvature reflecting the more pronounced anharmonicity of the effective potential with respect to that of ice Ih.

Keywords

potential of mean force / neutron Compton profile / nuclear quantum effects / path integral representation / anharmonicity

Cite this article

Download citation ▾
A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, R. Senesi. Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice. Front. Phys., 2018, 13(1): 136101 https://doi.org/10.1007/s11467-017-0724-4

References

[1]
M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and T. E. Markland, Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges, Chem. Rev. 116(5), 7259 (2016)
CrossRef ADS Google scholar
[2]
J. M. F. Gunn, C. Andreani, and J. Mayers, A new approach to impulsive neutron scattering, J. Phys. C Solid State Phys. 19(36), L835 (1986)
CrossRef ADS Google scholar
[3]
C. Andreani, D. Colognesi, J. Mayers, G. F. Reiter, and R. Senesi, Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering, Adv. Phys. 54(5), 377 (2005)
CrossRef ADS Google scholar
[4]
G. B. West, Electron scattering from atoms, nuclei and nucleons, Phys. Rev. C 18, 263 (1975)
CrossRef ADS Google scholar
[5]
G. Reiter and R. Silver, Measurement of interionic potentials in solids using deep-inelastic neutron scattering, Phys. Rev. Lett. 54(10), 1047 (1985)
CrossRef ADS Google scholar
[6]
G. I. Watson, Neutron Compton scattering, J. Phys.: Condens. Matter 8(33), 5955 (1996)
CrossRef ADS Google scholar
[7]
C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, and F. Fernandez-Alonso, Electron-volt neutron spectroscopy: beyond fundamental systems, Adv. Phys. 66(1), 1 (2017)
CrossRef ADS Google scholar
[8]
J. A. Morrone and R. Car, Nuclear quantum effects in water, Phys. Rev. Lett. 101(1), 017801 (2008)
CrossRef ADS Google scholar
[9]
R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55(22), 2471 (1985)D. Marx and M. Parrinello, Ab initio path integral molecular dynamics, Z. Phys. B 95(2), 143 (1994)
CrossRef ADS Google scholar
[10]
D. Marx and M. Parrinello, Ab initio path integral molecular dynamics: Basic ideas, J. Chem. Phys. 104(11), 4077 (1996)
CrossRef ADS Google scholar
[11]
L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Displaced path integral formulation for the momentum distribution of quantum particles, Phys. Rev. Lett. 105(11), 110602 (2010)
CrossRef ADS Google scholar
[12]
B. Cheng, J. Behler, and M. Ceriotti, Nuclear quantum effects in water at the triple point: Using theory as a link between experiments, J. Phys. Chem. Lett. 7(12), 2210 (2016)
CrossRef ADS Google scholar
[13]
C. Andreani, G. Romanelli, and R. Senesi, A Combined INS and DINS study of proton quantum dynamics of ice and water across the triple point and in the supercritical phase, Chem. Phys. 427, 106 (2013)
CrossRef ADS Google scholar
[14]
R. Senesi, G. Romanelli, M. A. Adams, and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427, 111 (2013)
CrossRef ADS Google scholar
[15]
D. Flammini, A. Pietropaolo, R. Senesi, C. Andreani, F. McBride, A. Hodgson, M. A. Adams, L. Lin, and R. Car, Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data, J. Chem. Phys. 136(2), 024504 (2012)
CrossRef ADS Google scholar
[16]
C. Pantalei, A. Pietropaolo, R. Senesi, S. Imberti, C. Andreani, J. Mayers, C. Burnham, and G. Reiter, Proton momentum distribution of liquid water from room temperature to the supercritical phase, Phys. Rev. Lett. 100(17), 177801 (2008)
CrossRef ADS Google scholar
[17]
C. Andreani, G. Romanelli, and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7(12), 2216 (2016)
CrossRef ADS Google scholar
[18]
R. P. Feynman, Forces in molecules, Phys. Rev. 56(4), 340 (1939)
CrossRef ADS Google scholar
[19]
R. Senesi, Direct kinetic energy extraction from neutron compton profiles, Nucl. Instrum. Methods Phys. Res. 661(1), 70 (2012)
CrossRef ADS Google scholar
[20]
V. F. Sears, Scaling and final-state interactions in deepinelastic neutron scattering, Phys. Rev. B 30(1), 44 (1984)
CrossRef ADS Google scholar
[21]
J. Mayers, User Guide to VESUVIO Data Analysis Programs for Powders and Liquids, Technical Report RALTR-2011-003, STFC (2011)
CrossRef ADS Google scholar
[22]
R. Senesi, C. Andreani, Z. Bowden, D. Colognesi, E. Degiorgi, A. L. Fielding, J. Mayers, M. Nardone, J. Norris, M. Praitano, N. J. Rhodes, W. G. Stirling, J. Tomkinson, and C. Uden, VESUVIO: A novel instrument for performing spectroscopic studies in condensed matter with eV neutrons at the ISIS facility, Physica B276–278, 200 (2000)
[23]
A. Pietropaolo and R. Senesi, Electronvolt neutron spectrometers, Phys. Rep. 508(3), 45 (2011)
[24]
V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, and K. Kremer, Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations, Macromolecules 39(19), 6708 (2006)
CrossRef ADS Google scholar
[25]
D. Trzesniak, A. P. E. Kunz, and W. F. van Gunsteren, A comparison of methods to compute the potential of mean force, Chem Phys Chem 8(1), 162 (2007)
CrossRef ADS Google scholar
[26]
D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67(2), 279 (1995)
CrossRef ADS Google scholar
[27]
S. K. Kauffmann and J. Rafelski, Analytic study of a sequence of path integral approximations for simple quantum systems at low temperature, Z. Phys. C 24(2), 157 (1984)
CrossRef ADS Google scholar
[28]
T. W. Whitfield and J. E. Straub, Uncertainty of path integral averages at low temperature, J. Chem. Phys. 115(15), 6834 (2001)
CrossRef ADS Google scholar
[29]
J. A. Morrone, V. Srinivasan, D. Sebastiani, and R. Car, Proton momentum distribution in water: An open path integral molecular dynamics study, J. Chem. Phys. 126(23), 234504 (2007)
CrossRef ADS Google scholar
[30]
Y. Marechal, The Hydrogen Bond and the Water Molecule- The Physics and Chemistry of Water, Aqueous and Bio-Media, Elsevier Science, 2006
[31]
P. M. Morse, Diatomic molecules according to the wave mechanics (II): Vibrational levels, Phys. Rev. 34(1), 57 (1929)
CrossRef ADS Google scholar
[32]
J. P. Dahl and M. Springborg, The Morse oscillator in position space, momentum space, and phase space, J. Chem. Phys. 88(7), 4535 (1988)
CrossRef ADS Google scholar
[33]
M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover Publications Inc., 1970
[34]
L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Momentum distribution, vibrational dynamics and the potential of mean force in ice, Phys. Rev. B 83(22), 220302 (2011)
CrossRef ADS Google scholar
[35]
T. Iijima, Anharmonicity of the OH...O hydrogen bond in liquid water, Chem. Phys. Lett. 217(5–6), 503 (1994)
CrossRef ADS Google scholar
[36]
R. H. McKenzie, C. Bekker, B. Athokpam, and S. G. Ramesh, Effect of quantum nuclear motion on hydrogen bonding, J. Chem. Phys. 140(17), 174508 (2014)
CrossRef ADS Google scholar
[37]
D. Hadzi and S. Bratos, in: The Hydrogen Bond: Recent Developments in Theory and Experiments, Vol. II, Structure and Spectroscopy, Eds. P. Schuster, G. Zundel, and C. Sandorfy, Amsterdam: North Holland Publishing Company, 1976
[38]
M. Barbatti and M. A. C. Nascimento, Vibrational analysis of small Hn+ hydrogen clusters, J. Chem. Phys. 119(11), 5444 (2003)
CrossRef ADS Google scholar
[39]
X. Zhang, S. Chen, and J. Li, Hydrogen-bond potential for ice VIII-X phase transition, Sci. Rep. 6(1), 37161 (2016)
CrossRef ADS Google scholar
[40]
H. J. Bakker, H.K. Nienhuys, G. Gallot, N. Lascoux, G. M. Gale, J.C. Leicknam, and S. Bratos, Transient absorption of vibrationally excited water,J. Chem. Phys. 116(6), 2592 (2002)
CrossRef ADS Google scholar
[41]
A. Parmentier, J. J. Shephard, G. Romanelli, R. Senesi, C. G. Salzmann, and C. Andreani, Evolution of hydrogen dynamics in amorphous ice with density, J. Chem. Phys. Lett. 6(11), 2038 (2015)
CrossRef ADS Google scholar
[42]
J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Structures of high and low density amorphous ice by neutron diffraction, Phys. Rev. Lett. 88(22), 225503 (2002)
CrossRef ADS Google scholar
[43]
J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Structure of a new dense amorphous ice, Phys. Rev. Lett. 89(20), 205503 (2002)
CrossRef ADS Google scholar
[44]
J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater, and C. G. Salzmann, Is high-density amorphous ice simply a ‘derailed’ state along the ice I to ice IV pathway? J. Phys. Phys. Lett. 8, 1645 (2017)
CrossRef ADS Google scholar
[45]
M. Guthrie, C. A. Tulk, C. J. Benmore, and D. D. Klug, A structural study of very high-density amorphous ice, Chem. Phys. Lett. 397(4–6), 335 (2004)
CrossRef ADS Google scholar
[46]
A. Shalit, F. Perakis, and P. Hamm, Communication: Disorder-suppressed vibrational relaxation in vapordeposited high-density amorphous ice,J. Chem. Phys. 140(15), 151102 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(2654 KB)

Accesses

Citations

Detail

Sections
Recommended

/