AC-current-induced magnetization switching in amorphous microwires

V. Zhukova, J. M. Blanco, A. Chizhik, M. Ipatov, A. Zhukov

PDF(835 KB)
PDF(835 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137501. DOI: 10.1007/s11467-017-0722-6
RESEARCH ARTICLE
RESEARCH ARTICLE

AC-current-induced magnetization switching in amorphous microwires

Author information +
History +

Abstract

We studied the influence of AC current flowing through microwires, on magnetization dynamics. We used a previously developed Sixtus-Tonks modified setup to evaluate the domain wall (DW) velocity within the microwire. However, instead of a magnetizing solenoid, we used a current flowing through the microwire. We observed that the AC current flowing through the annealed Co-rich microwire leads to remagnetization by fast domain wall propagation. The estimated DW velocity was approximately 4.5 km/s, which is similar to and even higher than that reported for the magnetic-field-driven domain wall propagation in Fe- and Co-rich microwires. We measured the DW velocity under tensile stress, and found that the DW velocity decreases under applied stress. An observed DW propagation induced by the current flowing through the microwire is explained considering the influence of an Oersted magnetic field on the outer domain shell. This field has a circular easy magnetization direction and magnetostatic interaction between the outer circumferentially magnetized shell and the inner axially magnetized core.

Keywords

domain wall propagation / magnetic microwire / amorphous material / magnetoelastic anisotropy

Cite this article

Download citation ▾
V. Zhukova, J. M. Blanco, A. Chizhik, M. Ipatov, A. Zhukov. AC-current-induced magnetization switching in amorphous microwires. Front. Phys., 2018, 13(2): 137501 https://doi.org/10.1007/s11467-017-0722-6

References

[1]
T. Ono, H. Miyajima, K. Mibu, N. Hosoito, and T. Shinjo, Propagation of a magnetic domain wall in a submicrometer magnetic wire, Science 284(5413), 468 (1999)
CrossRef ADS Google scholar
[2]
D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Magnetic domain-wall logic, Science 309(5741), 1688 (2005)
CrossRef ADS Google scholar
[3]
K. J. Sixtus and L. Tonks, Propagation of large Barkhausen discontinuities (II), Phys. Rev. 42(3), 419 (1932)
CrossRef ADS Google scholar
[4]
A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials, New York: Academic Press, 1979
[5]
A. Kunz, Field induced domain wall collisions in thin magnetic nanowires, Appl. Phys. Lett. 94(13), 132502 (2009)
CrossRef ADS Google scholar
[6]
M. Hayashi, L. Thomas, Ch. Rettner, R. Moriya, X. Jiang, and S. Parkin, Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires, Phys. Rev. Lett. 97(20), 207205 (2006)
CrossRef ADS Google scholar
[7]
V. Zhukova, A. F. Cobeño, A. Zhukov, J. M. Blanco, S. Puerta, J. Gonzalez, and M. Vázquez, Tailoring of magnetic properties of glass-coated microwires by current annealing, J. Non-Cryst. Solids 287(1–3), 31 (2001)
CrossRef ADS Google scholar
[8]
V. Zhukova, M. Ipatov, J. González, J. M. Blanco and A. P. Zhukov, Development of thin microwires with enhanced magnetic softness and GMI, IEEE Trans. Magn. 44(Part 2), 3958 (2008)
CrossRef ADS Google scholar
[9]
A. Vanhaverbeke, A. Bischof, and R. Allenspach, Control of domain wall polarity by current pulses, Phys. Rev. Lett. 101(10), 107202 (2008)
CrossRef ADS Google scholar
[10]
J. Gonzalez, A. Chizhik, A. Zhukov, and J. M. Blanco, Surface magnetization reversal and magnetic domain structure in amorphous microwires, Phys. Status Solidi. A 208(3), 502 (2011)
CrossRef ADS Google scholar
[11]
V. Zhukova, N. A. Usov, A. Zhukov, and J. Gonzalez, Length effect in a Co-rich amorphous wire, Phys. Rev. B 65(13), 134407 (2002)
CrossRef ADS Google scholar
[12]
Yu. Kabanov, A. Zhukov, V. Zhukova, and J. Gonzalez, Magnetic domain structure of wires studied by using the magneto-optical indicator film method, Appl. Phys. Lett. 87(14), 142507 (2005)
CrossRef ADS Google scholar
[13]
J. N. Nderu, M. Takajo, J. Yamasaki, and F. B. Humphrey, Effect of stress on the bamboo domains and magnetization process of CoSiB amorphous wire, IEEE Trans. Magn. 34(4), 1312 (1998)
CrossRef ADS Google scholar
[14]
A. Zhukov, J. M. Blanco, A. Chizhik, M. Ipatov, V. Rodionova, and V. Zhukova, Manipulation of domain wall dynamics in amorphous microwires through domain wall collision,J. Appl. Phys. 114(4), 043910 (2013)
CrossRef ADS Google scholar
[15]
H. Chiriac, T. A. Ovari, and M. Tibu, Domain wall propagation in nearly zero magnetostrictive amorphous microwires, IEEE Trans. Magn. 44(11), 3931 (2008)
CrossRef ADS Google scholar
[16]
V. Zhukova, J. M. Blanco, V. Rodionova, M. Ipatov, and A. Zhukov, Domain wall propagation in micrometric wires: Limits of single domain wall regime, J. Appl. Phys. 111, 07E311 (2012)
[17]
M. Vázquez, G. A. Basheed, G. Infante, and R. P. Del Real, Trapping and injecting single domain walls in magnetic wire by local fields, Phys. Rev. Lett. 108(3), 037201 (2012)
CrossRef ADS Google scholar
[18]
R. Gemperle, L. Kraus, and J. Schneider, Magnetization reversal in amorphous (Fe1−xNix)80P10B10microwires, J. Phys. B 28(10), 1138 (1978)
[19]
A. Zhukov, A. Talaat, M. Ipatov, J. M. Blanco, and V. Zhukova, Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment, J. Alloys Compd. 615, 610 (2014)
CrossRef ADS Google scholar
[20]
A. Talaat, M. Churyukanova, J. M. Blanco, M. Ipatov, V. Zhukova, and A. Zhukov, Simultaneous detection of giant magnetoimpedance and fast domain wall propagation in Co-based glass-coated microwires,IEEE Magn. Lett. 7, 5200604 (2016)
CrossRef ADS Google scholar
[21]
M. H. Phan and H. X. Peng, Giant magnetoimpedance materials: Fundamentals and applications, Prog. Mater. Sci. 53(2), 323 (2008)
CrossRef ADS Google scholar
[22]
L. V. Panina and K. Mohri, Magneto‐impedance effect in amorphous wires, Appl. Phys. Lett. 65(9), 1189 (1994)
CrossRef ADS Google scholar
[23]
A. Zhukov, M. Ipatov, and V. Zhukova, Advances in giant magnetoimpedance of materials, Handbook of Magnetic Materials, ed. K. H. J. Buschow, 24: Chapter 2, 139–236, 2015
[24]
T. Uchiyama, K. Mohri, and Sh. Nakayama, Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-Tesla resolution amorphous wire magneto-impedance sensor, IEEE Trans. Magn. 47(10), 3070 (2011)
CrossRef ADS Google scholar
[25]
M. Ipatov, V. Zhukova, J. Gonzalez, and A. Zhukov, Magnetoimpedance hysteresis in amorphous microwires induced by core–shell interaction, Appl. Phys. Lett. 105(12), 122401 (2014)
CrossRef ADS Google scholar
[26]
A. Zhukov, A. Chizhik, M. Ipatov, A. Talaat, J. M. Blanco, A. Stupakiewicz, and V. Zhukova, Giant magnetoimpedance effect and domain wall dynamics in Co-rich amorphous microwires, J. Appl. Phys. 117(4), 043904 (2015)
CrossRef ADS Google scholar
[27]
R. Varga, A. Zhukov, J. M. Blanco, M. Ipatov, V. Zhukova, J. Gonzalez, and P. Vojtaník, Fast magnetic domain wall in magnetic microwires, Phys. Rev. B 74(21), 212405 (2006)
CrossRef ADS Google scholar
[28]
A. Zhukov, Design of the magnetic properties of Fe-rich, glass-coated microwires for technical applications, Adv. Funct. Mater. 16(5), 675 (2006)
CrossRef ADS Google scholar
[29]
M. Vázquez and D. X. Chen, The magnetization reversal process in amorphous wires, IEEE Trans. Magn. 31(2), 1229 (1995)
CrossRef ADS Google scholar
[30]
A. Zhukov, Domain wall propagation in a Fe-rich glasscoated amorphous microwire, Appl. Phys. Lett. 78(20), 3106 (2001)
CrossRef ADS Google scholar
[31]
N. A. Usov, A. S. Antonov, and A. N. Lagar’kov, Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy, J. Magn. Magn. Mater. 185(2), 159 (1998)
CrossRef ADS Google scholar
[32]
S. A. Gudoshnikov, Yu. B. Grebenshchikov, B. Ya. Ljubimov, P. S. Palvanov, N. A. Usov, M. Ipatov, A. Zhukov, and J. Gonzalez, Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire, Phys. Status Solidi. A 206(4), 613 (2009)
CrossRef ADS Google scholar
[33]
L. V. Panina, M. Mizutani, K. Mohri, F. R. Humphrey, and L. Ogasawara, Dynamics and relaxation of large Barkhausen discontinuity in amorphous wires, IEEE Trans. Magn. 27(6), 5331 (1991)
CrossRef ADS Google scholar
[34]
L. V. Panina, M. Ipatov, V. Zhukova, and A. Zhukov, Domain wall propagation in Fe-rich amorphous microwires, Physica B 407(9), 1442 (2012)
CrossRef ADS Google scholar
[35]
D. X. Chen, N. M. Dempsey, M. Vázquez, and A. Hernando, Propagating domain wall shape and dynamics in iron-rich amorphous wires, IEEE Trans. Magn. 31(1), 781 (1995)
CrossRef ADS Google scholar
[36]
P. M. Shepley, A. W. Rushforth, M. Wang, G. Burnell, and T. A. Moore, Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain, Sci. Rep. 5(1), 7921 (2015)
CrossRef ADS Google scholar
[37]
A. Chizhik, V. Zablotskii, A. Stupakiewicz, C. Gómez-Polo, A. Maziewski, A. Zhukov, J. Gonzalez, and J. M. Blanco, Magnetization switching in ferromagnetic microwires, Phys. Rev. B 82(21), 212401 (2010)
CrossRef ADS Google scholar
[38]
N. A. Usov and S. A. Gudoshnikov, Circular magnetization process in amorphous microwire with negative magnetostriction, J. Phys. D 49(16), 165001 (2016)
CrossRef ADS Google scholar
[39]
N. Usov, A. Antonov, A. Dykhne, and A. Lagar’kov, Possible origin for the bamboo domain structure in Corich amorphous wire, J. Magn. Magn. Mater. 174(1–2), 127 (1997)
CrossRef ADS Google scholar
[40]
A. S. Antonov, V. T. Borisov, O. V. Borisov, A. F. Prokoshin, and N. A. Usov, Residual quenching stresses in glass-coated amorphous ferromagnetic microwires, J. Phys. D 33(10), 1161 (2000)
CrossRef ADS Google scholar
[41]
H. Chiriac, T. A. Óvári, and A. Zhukov, Magnetoelastic anisotropy of amorphous microwireS, J. Magn. Magn. Mater. 254–255, 469 (2003)
CrossRef ADS Google scholar
[42]
M. Ipatov, V. Zhukova, A. Zhukov, J. Gonzalez, and A. Zvezdin, Low-field hysteresis in the magnetoimpedance of amorphous microwires, Phys. Rev. B 81(13), 134421 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(835 KB)

Accesses

Citations

Detail

Sections
Recommended

/