Majorana modes in solid state systems and its dynamics

Qi Zhang (张起), Biao Wu (吴飙)

PDF(143 KB)
PDF(143 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137101. DOI: 10.1007/s11467-017-0715-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Majorana modes in solid state systems and its dynamics

Author information +
History +

Abstract

We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev’s spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

Keywords

Majorana mode / Majorana operator / anti-particle / Kitaev’s model / dynamical behavior

Cite this article

Download citation ▾
Qi Zhang (张起), Biao Wu (吴飙). Majorana modes in solid state systems and its dynamics. Front. Phys., 2018, 13(2): 137101 https://doi.org/10.1007/s11467-017-0715-5

References

[1]
F.Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
[2]
A.Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi44(10S), 131(2001)
CrossRef ADS Google scholar
[3]
S. B.Chungand S. C.Zhang, Detecting the Majorana fermion surface state of 3He–B through spin relaxation, Phys. Rev. Lett. 103(23), 235301(2009)
CrossRef ADS Google scholar
[4]
G.Strübi, W.Belzig, M. S.Choi, and C.Bruder, Interferometric and noise signatures of Majorana fermion edge states in transport experiments, Phys. Rev. Lett. 107(13), 136403(2011)
CrossRef ADS Google scholar
[5]
L.Fidkowski, J.Alicea, N. H.Lindner, R. M.Lutchyn, and M. P. A.Fisher, Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions, Phys. Rev. B85(24), 245121(2012)
CrossRef ADS Google scholar
[6]
J.Reuther, J.Alicea, and A.Yacoby, Gate-defined wires in HgTe quantum wells: From Majorana fermions to spintronics, Phys. Rev. X3(3), 031011(2013)
CrossRef ADS Google scholar
[7]
J. K.Pachos, E.Alba, V.Lahtinen, and J. J.Garcia-Ripoll, Seeing Majorana fermions in time-of-flight images of staggered spinless fermions coupled by s-wave pairing, Phys. Rev. A88(1), 013622(2013)
CrossRef ADS Google scholar
[8]
M.Gong, L.Mao, S.Tewari, and C. W.Zhang, Majorana fermions under uniaxial stress in semiconductorsuperconductor heterostructures, Phys. Rev. B87, 060502(R) (2013)
[9]
A.Kunduand B.Seradjeh, Transport signatures of floquet Majorana fermions in driven topological superconductors, Phys. Rev. Lett. 111(13), 136402(2013)
CrossRef ADS Google scholar
[10]
J.Knolle, D. L.Kovrizhin, J. T.Chalker, and R.Moessner, Dynamics of a two-dimensional quantum spin liquid: Signatures of emergent Majorana fermions and fluxes, Phys. Rev. Lett. 112(20), 207203(2014)
CrossRef ADS Google scholar
[11]
L. J.Langand S.Chen, Majorana fermions in densitymodulated p-wave superconducting wires, Phys. Rev. B86(20), 205135(2012)
CrossRef ADS Google scholar
[12]
P.Wang, S.Chen, and X. L.Gao, Effect of incommensurate potential on the resonant tunneling through Majorana bound states on the topological superconductor chains, Eur. Phys. J. B87(7), 164(2014)
CrossRef ADS Google scholar
[13]
X.-J.Liuand A. M.Lobos, Manipulating Majorana fermions in quantum nanowires with broken inversion symmetry, Phys. Rev. B87, 060504(R) (2013)
[14]
X. J.Liu, C. L. M.Wong, and K. T.Law, Non-Abelian Majorana doublets in time-reversal-invariant topological superconductors, Phys. Rev. X4(2), 021018(2014)
CrossRef ADS Google scholar
[15]
Y.Hu, Z.Cai, M. A.Baranov, and P.Zoller, Majorana fermions in noisy Kitaev wires, Phys. Rev. B92(16), 165118(2015)
CrossRef ADS Google scholar
[16]
Y.Huand M. A.Baranov, Effects of gapless bosonic fluctuations on Majorana fermions in an atomic wire coupled to a molecular reservoir, Phys. Rev. A92(5), 053615(2015)
CrossRef ADS Google scholar
[17]
M.Maiti,K. M.Kulikov, K.Sengupta, and Y. M.Shukrinov, Josephson junction detectors for Majorana modes and Dirac fermions, Phys. Rev. B92(22), 224501(2015)
CrossRef ADS Google scholar
[18]
V.Mourik, K.Zuo, S. M.Frolov, S. R.Plissard, E. P. A. M.Bakkers, and L. P.Kouwenhoven, Signatures of Majorana fermions in hybrid superconductorsemiconductor nanowire devices, Science336(6084), 1003(2012)
CrossRef ADS Google scholar
[19]
M. T.Deng, C. L.Yu, G. Y.Huang, M.Larsson, P.Caroff, and H. Q.Xu, Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device, Nano Lett. 12(12), 6414(2012)
CrossRef ADS Google scholar
[20]
A. D. K.Finck, D. J.Van Harlingen, P. K.Mohseni, K.Jung, and X.Li, Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device, Phys. Rev. Lett. 110(12), 126406(2013)
CrossRef ADS Google scholar
[21]
E. J. H.Lee, X.Jiang, M.Houzet, R.Aguado, C. M.Lieber, and S.De Franceschi, Spin-resolved Andreev levels and parity crossings in hybrid superconductorsemiconductor nanostructures, Nat. Nanotechnol. 9(1), 79(2014)
CrossRef ADS Google scholar
[22]
S.Nadj-Perge, I. K.Drozdov, J.Li, H.Chen, S.Jeon, J.Seo, A. H.MacDonald, B. A.Bernevig, and A.Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science346(6209), 602(2014)
CrossRef ADS Google scholar
[23]
H. H.Sun, K. W.Zhang, L. H.Hu, C.Li, G. Y.Wang, H. Y.Ma, Z. A.Xu, C. L.Gao, D. D.Guan, Y. Y.Li, C. H.Liu, D.Qian, Y.Zhou, L.Fu, S. C.Li, F. C.Zhang, and J. F.Jia, Majorana zero mode detected with spin selective andreev reflection in the vortex of a topological superconductor, Phys. Rev. Lett. 116(25), 257003(2016)
CrossRef ADS Google scholar
[24]
A.Zee, Quantum Field Theory in a Nutshell, Princeton: Princeton University Press, 2010
[25]
M.Leijnseand K.Flensberg, Introduction to topological superconductivity and Majorana fermions, Semicond. Sci. Technol. 27(12), 124003(2012)
CrossRef ADS Google scholar
[26]
A.Das, Y.Ronen, Y.Most, Y.Oreg, M.Heiblum, and H.Shtrikman, Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as signature of Majorana fermions, Nat. Phys. 8(12), 887(2012)
[27]
L. P.Rokhinson, X.Liu, and J. K.Furdyna, The fractional a.c. Josephson effect in a semiconductorsuperconductor nanowire as a signature of Majorana particles, Nat. Phys. 8(11), 795(2012)

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(143 KB)

Accesses

Citations

Detail

Sections
Recommended

/