Structural properties of water confined by phospholipid membranes

Fausto Martelli, Hsin-Yu Ko, Carles Calero Borallo, Giancarlo Franzese

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136801.

PDF(1416 KB)
PDF(1416 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136801. DOI: 10.1007/s11467-017-0704-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural properties of water confined by phospholipid membranes

Author information +
History +

Abstract

Biological membranes are essential for cell life and hydration. Water provides the driving force for the assembly and stability of many cell components. Here, we study the structural properties of water in a phospholipid membrane. We characterize the local structures, inspecting the intermediate range order (IRO) and adopting a sensitive local order metric recently proposed by Martelli et al. that measures and grades the degree of overlap of the local environment with the structures of perfect ice. Close to the membrane, water acquires a high IRO and changes its dynamical properties; i.e., its translational and rotational degrees of freedom slow in a region that extends over ≃ 1 nm from the membrane interface. Surprisingly, we show that at distances as far as ≃ 2:5 nm from the interface, although the bulk-like dynamics are recovered, the IRO of water is still slightly higher than that in the bulk under the same thermodynamic conditions. Therefore, the water-membrane interface has a structural effect at ambient conditions that propagates further than the often-invoked 1-nm length scale. Consequently, this should be considered when analyzing experimental data of water confined by membranes and could help us to understand the role of water in biological systems.

Keywords

confined water / dimyristoylphosphatidylcholines / DMPC / order parameter

Cite this article

Download citation ▾
Fausto Martelli, Hsin-Yu Ko, Carles Calero Borallo, Giancarlo Franzese. Structural properties of water confined by phospholipid membranes. Front. Phys., 2018, 13(1): 136801 https://doi.org/10.1007/s11467-017-0704-8

References

[1]
I. W.Hamley, Introduction to Soft Matter, John Wiley and Sons, West Sussex, England, 2007
[2]
J.Fitter, R. E.Lechner, and N. A.Dencher, Interactions of hydration water and biological membranes studied by neutron scattering, J. Phys. Chem. B103(38), 8036 (1999)
CrossRef ADS Google scholar
[3]
M.Trapp, T.Gutberlet, F.Juranyi,T.Unruh, B.Demé, M.Tehei, and J.Peters, Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering, J. Chem. Phys. 133(16), 164505(2010)
CrossRef ADS Google scholar
[4]
S. R.Wassall, Pulsed field gradient-spin echo NMR studies of water diffusion in a phospholipid model membrane, Biophys. J. 71(5), 2724(1996)
CrossRef ADS Google scholar
[5]
V. V.Volkov, D. J.Palmer, and R.Righini, Distinct water species confined at the interface of a phospholipid membrane, Phys. Rev. Lett. 99(7), 078302(2007)
CrossRef ADS Google scholar
[6]
W.Zhao, D. E.Moilanen, E. E.Fenn, and M. D.Fayer, Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy, J. Am. Chem. Soc. 130(42), 13927(2008)
CrossRef ADS Google scholar
[7]
K. J.Tielrooij, D.Paparo, L.Piatkowski, H. J.Bakker, and M.Bonn, Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy, Biophys. J. 97(9), 2484(2009)
CrossRef ADS Google scholar
[8]
W.Hua, D.Verreault, and H. C.Allen, Solvation of calciumphosphate headgroup complexes at the dppc/aqueous interface, ChemPhysChem16(18), 3910(2015)
CrossRef ADS Google scholar
[9]
T.Róg, K.Murzyn, and M.Pasenkiewicz-Gierula, The dynamics of water at the phospholipid bilayer surface: A molecular dynamics simulation study, Chem. Phys. Lett. 352(5–6), 323(2002)
CrossRef ADS Google scholar
[10]
S. Y.Bhideand M. L.Berkowitz, Structure and dynamics of water at the interface with phospholipid bilayers, J. Chem. Phys. 123(22), 224702(2005)
CrossRef ADS Google scholar
[11]
M. L.Berkowitz, D. L.Bostick, and S.Pandit, Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations, Chem. Rev. 106(4), 1527(2006)
CrossRef ADS Google scholar
[12]
Y.von Hansen, S.Gekle, and R. R.Netz, Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes, Phys. Rev. Lett. 111(11), 118103(2013)
CrossRef ADS Google scholar
[13]
Z.Zhangand M. L.Berkowitz, Orientational dynamics of water in phospholipid bilayers with different hydration levels, J. Phys. Chem. B113(21), 7676(2009)
CrossRef ADS Google scholar
[14]
S. M.Gruenbaumand J. L.Skinner, Vibrational spectroscopy of water in hydrated lipid multi-bilayers (i): Infrared spectra and ultrafast pump-probe observables, J. Chem. Phys. 135(7), 075101(2011)
CrossRef ADS Google scholar
[15]
C.Calero,E. H.Stanley, and G.Franzese, Structural interpretation of the large slowdown of water dynamics at stacked phospholipid membranes for decreasing hydration level: All-atom molecular dynamics, Materials9(5), 319(2016)
CrossRef ADS Google scholar
[16]
F.Martelli, H. Y.Ko, E. C.Oǧuz, and R.Car, A local order metric for condensed phase environments, arXiv: 1609.03123 [physics.comp-ph]
[17]
M.De Marzio, G.Camisasca, M. M.Conde, M.Rovere, and P.Gallo, Structural properties and fragile to strong transition in confined water, J. Chem. Phys. 146(8), 084505(2017)
CrossRef ADS Google scholar
[18]
R.Zangiand B. J.Berne, Temperature dependence of dimerization and dewetting of large-scale hydrophobes: A molecular dynamics study, J. Phys. Chem. B112(29), 8634(2008)
CrossRef ADS Google scholar
[19]
J. C.Phillips, R.Braun, W.Wang, J.Gumbart, E.Tajkhorshid, E.Villa, C.Chipot, R. D.Skeel, L.Kalé, and K.Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781(2005)
CrossRef ADS Google scholar
[20]
J. B.Klauda, R. M.Venable, J. A.Freites, J. W.O’Connor, D. J.Tobias, C.Mondragon-Ramirez, I.Vorobyov, A. D.Jr MacKerell, and R. W.Pastor, Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types, J. Phys. Chem. B114(23), 7830(2010)
CrossRef ADS Google scholar
[21]
J. B.Lim, B.Rogaski, and J. B.Klauda, Update of the cholesterol force field parameters in CHARMM, J. Phys. Chem. B116(1), 203(2012)
CrossRef ADS Google scholar
[22]
W. L.Jorgensen, J.Chandrasekhar, J. D.Madura, R. W.Impey, and M. L.Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926(1983)
CrossRef ADS Google scholar
[23]
Jr. A. D.MacKerell, D.Bashford, M.Bellott, Jr. R. L.Dunbrack, J. D.Evanseck, et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B102(18), 3586(1998)
[24]
U.Essmann, L.Perera, M. L.Berkowitz, T.Darden, H.Lee, and L. G.Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(19), 8577(1995)
CrossRef ADS Google scholar
[25]
H. J. C.Berendsen, J. P. M.Postma, W. F.van Gunsteren, A.DiNola, and J. R.Haak, Molecular dynamics with coupling to an external bath, J. Phys. Chem. 81(8), 3684(1984)
CrossRef ADS Google scholar
[26]
S. E.Feller, Y.Zhang, R. W.Pastor, and B. R.Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Phys. Chem. 103(11), 4613(1995)
CrossRef ADS Google scholar
[27]
R. C.Read and J. R.Wilson, An Atlas of Graphs, Oxford University Press, 2016

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1416 KB)

Accesses

Citations

Detail

Sections
Recommended

/