
Structural properties of water confined by phospholipid membranes
Fausto Martelli, Hsin-Yu Ko, Carles Calero Borallo, Giancarlo Franzese
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136801.
Structural properties of water confined by phospholipid membranes
Biological membranes are essential for cell life and hydration. Water provides the driving force for the assembly and stability of many cell components. Here, we study the structural properties of water in a phospholipid membrane. We characterize the local structures, inspecting the intermediate range order (IRO) and adopting a sensitive local order metric recently proposed by Martelli et al. that measures and grades the degree of overlap of the local environment with the structures of perfect ice. Close to the membrane, water acquires a high IRO and changes its dynamical properties; i.e., its translational and rotational degrees of freedom slow in a region that extends over ≃ 1 nm from the membrane interface. Surprisingly, we show that at distances as far as ≃ 2:5 nm from the interface, although the bulk-like dynamics are recovered, the IRO of water is still slightly higher than that in the bulk under the same thermodynamic conditions. Therefore, the water-membrane interface has a structural effect at ambient conditions that propagates further than the often-invoked 1-nm length scale. Consequently, this should be considered when analyzing experimental data of water confined by membranes and could help us to understand the role of water in biological systems.
confined water / dimyristoylphosphatidylcholines / DMPC / order parameter
[1] |
I. W.Hamley, Introduction to Soft Matter, John Wiley and Sons, West Sussex, England, 2007
|
[2] |
J.Fitter, R. E.Lechner, and N. A.Dencher, Interactions of hydration water and biological membranes studied by neutron scattering, J. Phys. Chem. B103(38), 8036 (1999)
CrossRef
ADS
Google scholar
|
[3] |
M.Trapp, T.Gutberlet, F.Juranyi,T.Unruh, B.Demé, M.Tehei, and J.Peters, Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering, J. Chem. Phys. 133(16), 164505(2010)
CrossRef
ADS
Google scholar
|
[4] |
S. R.Wassall, Pulsed field gradient-spin echo NMR studies of water diffusion in a phospholipid model membrane, Biophys. J. 71(5), 2724(1996)
CrossRef
ADS
Google scholar
|
[5] |
V. V.Volkov, D. J.Palmer, and R.Righini, Distinct water species confined at the interface of a phospholipid membrane, Phys. Rev. Lett. 99(7), 078302(2007)
CrossRef
ADS
Google scholar
|
[6] |
W.Zhao, D. E.Moilanen, E. E.Fenn, and M. D.Fayer, Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy, J. Am. Chem. Soc. 130(42), 13927(2008)
CrossRef
ADS
Google scholar
|
[7] |
K. J.Tielrooij, D.Paparo, L.Piatkowski, H. J.Bakker, and M.Bonn, Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy, Biophys. J. 97(9), 2484(2009)
CrossRef
ADS
Google scholar
|
[8] |
W.Hua, D.Verreault, and H. C.Allen, Solvation of calciumphosphate headgroup complexes at the dppc/aqueous interface, ChemPhysChem16(18), 3910(2015)
CrossRef
ADS
Google scholar
|
[9] |
T.Róg, K.Murzyn, and M.Pasenkiewicz-Gierula, The dynamics of water at the phospholipid bilayer surface: A molecular dynamics simulation study, Chem. Phys. Lett. 352(5–6), 323(2002)
CrossRef
ADS
Google scholar
|
[10] |
S. Y.Bhideand M. L.Berkowitz, Structure and dynamics of water at the interface with phospholipid bilayers, J. Chem. Phys. 123(22), 224702(2005)
CrossRef
ADS
Google scholar
|
[11] |
M. L.Berkowitz, D. L.Bostick, and S.Pandit, Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations, Chem. Rev. 106(4), 1527(2006)
CrossRef
ADS
Google scholar
|
[12] |
Y.von Hansen, S.Gekle, and R. R.Netz, Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes, Phys. Rev. Lett. 111(11), 118103(2013)
CrossRef
ADS
Google scholar
|
[13] |
Z.Zhangand M. L.Berkowitz, Orientational dynamics of water in phospholipid bilayers with different hydration levels, J. Phys. Chem. B113(21), 7676(2009)
CrossRef
ADS
Google scholar
|
[14] |
S. M.Gruenbaumand J. L.Skinner, Vibrational spectroscopy of water in hydrated lipid multi-bilayers (i): Infrared spectra and ultrafast pump-probe observables, J. Chem. Phys. 135(7), 075101(2011)
CrossRef
ADS
Google scholar
|
[15] |
C.Calero,E. H.Stanley, and G.Franzese, Structural interpretation of the large slowdown of water dynamics at stacked phospholipid membranes for decreasing hydration level: All-atom molecular dynamics, Materials9(5), 319(2016)
CrossRef
ADS
Google scholar
|
[16] |
F.Martelli, H. Y.Ko, E. C.Oǧuz, and R.Car, A local order metric for condensed phase environments, arXiv: 1609.03123 [physics.comp-ph]
|
[17] |
M.De Marzio, G.Camisasca, M. M.Conde, M.Rovere, and P.Gallo, Structural properties and fragile to strong transition in confined water, J. Chem. Phys. 146(8), 084505(2017)
CrossRef
ADS
Google scholar
|
[18] |
R.Zangiand B. J.Berne, Temperature dependence of dimerization and dewetting of large-scale hydrophobes: A molecular dynamics study, J. Phys. Chem. B112(29), 8634(2008)
CrossRef
ADS
Google scholar
|
[19] |
J. C.Phillips, R.Braun, W.Wang, J.Gumbart, E.Tajkhorshid, E.Villa, C.Chipot, R. D.Skeel, L.Kalé, and K.Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781(2005)
CrossRef
ADS
Google scholar
|
[20] |
J. B.Klauda, R. M.Venable, J. A.Freites, J. W.O’Connor, D. J.Tobias, C.Mondragon-Ramirez, I.Vorobyov, A. D.Jr MacKerell, and R. W.Pastor, Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types, J. Phys. Chem. B114(23), 7830(2010)
CrossRef
ADS
Google scholar
|
[21] |
J. B.Lim, B.Rogaski, and J. B.Klauda, Update of the cholesterol force field parameters in CHARMM, J. Phys. Chem. B116(1), 203(2012)
CrossRef
ADS
Google scholar
|
[22] |
W. L.Jorgensen, J.Chandrasekhar, J. D.Madura, R. W.Impey, and M. L.Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926(1983)
CrossRef
ADS
Google scholar
|
[23] |
Jr. A. D.MacKerell, D.Bashford, M.Bellott, Jr. R. L.Dunbrack, J. D.Evanseck, et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B102(18), 3586(1998)
|
[24] |
U.Essmann, L.Perera, M. L.Berkowitz, T.Darden, H.Lee, and L. G.Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(19), 8577(1995)
CrossRef
ADS
Google scholar
|
[25] |
H. J. C.Berendsen, J. P. M.Postma, W. F.van Gunsteren, A.DiNola, and J. R.Haak, Molecular dynamics with coupling to an external bath, J. Phys. Chem. 81(8), 3684(1984)
CrossRef
ADS
Google scholar
|
[26] |
S. E.Feller, Y.Zhang, R. W.Pastor, and B. R.Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Phys. Chem. 103(11), 4613(1995)
CrossRef
ADS
Google scholar
|
[27] |
R. C.Read and J. R.Wilson, An Atlas of Graphs, Oxford University Press, 2016
|
/
〈 |
|
〉 |