Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs

Li-Min Ying , Jie Zhou , Ming Tang , Shu-Guang Guan , Yong Zou

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130201

PDF (1280KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130201 DOI: 10.1007/s11467-017-0698-2
RESEARCH ARTICLE

Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs

Author information +
History +
PDF (1280KB)

Abstract

The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.

Keywords

fixation time distribution / complex networks / coordination game

Cite this article

Download citation ▾
Li-Min Ying, Jie Zhou, Ming Tang, Shu-Guang Guan, Yong Zou. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs. Front. Phys., 2018, 13(1): 130201 DOI:10.1007/s11467-017-0698-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. M.Smith, Evolution and the Theory of Games, Cambridge: Cambridge University Press, 1982

[2]

J.Hofbauerand K.Sigmund, Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press, 1998

[3]

M. A.Nowakand R. M.May, Evolutionary games and spatial chaos, Nature359(6398), 826 (1992)

[4]

M. A.Nowak,A.Sasaki, C.Taylor, and D.Fudenberg, Emergence of cooperation and evolutionary stability in finite populations, Nature428(6983), 646(2004)

[5]

E.Lieberman, C.Hauert, and M. A.Nowak, Evolutionary dynamics on graphs, Nature433(7023), 312(2005)

[6]

B.Ottino-Loffler, J. G.Scott, and S. H.Strogatz, Takeover times for a simple model of network infection,

[7]

M. A.Nowak, Five rules for the evolution of cooperation, Science314(5805), 1560(2006)

[8]

G.Szabóand G.Fáth, Evolutionary games on graphs, Phys. Rep. 446(4–6), 97(2007)

[9]

A.Arenas, A.Díaz-Guilera, J.Kurths, Y.Moreno, and C. S.Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93(2008)

[10]

C.Taylor, D.Fudenberg, A.Sasaki, and M. A.Nowak, Evolutionary game dynamics in finite populations, Bull. Math. Biol. 66(6), 1621(2004)

[11]

A.TraulsenandC.Hauert, Stochastic evolutionary game dynamics, in: H.-G. Schuster (Ed.), Reviews of Nonlinear Dynamics and Complexity, Vol. 2, Wiley-VCH Verlag GmbH & Co. KGaA, 2009, pp 25–61

[12]

N.van Kampen, Stochastic Processes in Physics and Chemistry, 3rd Ed., Amsterdam: Elsevier, 2007

[13]

T.Antaland I.Scheuring, Fixation of strategies for an evolutionary game in finite populations, Bull. Math. Biol. 68(8), 1923(2006)

[14]

D.Zhouand H.Qian, Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics, Phys. Rev. E84(3), 031907(2011)

[15]

T.Galla, Imitation, internal absorption and the reversal of local drift in stochastic evolutionary games, J. Theor. Biol. 269(1), 46(2011)

[16]

A.Traulsen, J. C.Claussen, andC.Hauert, Coevolutionary dynamics: From finite to infinite populations, Phys. Rev. Lett. 95(23), 238701(2005)

[17]

A.Traulsen, M.Nowak, and J.Pacheco, Stochastic dynamics of invasion and fixation, Phys. Rev. E74(1), 011909(2006)

[18]

M.Mobilia, Stochastic dynamics of the prisoner’s dilemma with cooperation facilitators, Phys. Rev. E86(1), 011134(2012)

[19]

L. Y.Zhang, Y.Zou, S. G.Guan, and Z. H.Liu, Analytical description for the critical fixations of evolutionary coordination games on finite complex structured populations, Phys. Rev. E91(4), 042807(2015)

[20]

M.Assafand M.Mobilia, Large fluctuations and fixation in evolutionary games, J. Stat. Mech.: Theory and Experiment2010(09), P09009(2010)

[21]

M.Assaf, M.Mobilia, and E.Roberts, Cooperation dilemma in finite populations under fluctuating environments, Phys. Rev. Lett. 111(23), 238101(2013)

[22]

A. J.Black,A.Traulsen, and T.Galla, Mixing times in evolutionary game dynamics, Phys. Rev. Lett.109(2), 028101(2012)

[23]

A.Traulsen, J. C.Claussen, and C.Hauert, Stochastic differential equations for evolutionary dynamics with demographic noise and mutations, Phys. Rev. E85(4), 041901(2012)

[24]

T.Antal, S.Redner, and V.Sood, Evolutionary dynamics on degree-heterogeneous graphs, Phys. Rev. Lett. 96(18), 188104(2006)

[25]

K.Hashimotoand K.Aihara, Fixation probabilities in evolutionary game dynamics with a two-strategy game in finite diploid populations, J. Theor. Biol. 258(4), 637(2009)

[26]

K. H. Z.So, H.Ohtsuki, andT.Kato, Spatial effect on stochastic dynamics of bistable evolutionary games, J. Stat. Mech.: Theory and Experiment2014(10), P10020(2014)

[27]

P. MAltrockand A.Traulsen, Fixation times in evolutionary games under weak selection, New J. Phys. 11(1), 013012(2009)

[28]

T. G.Mattos, C.Mejía-Monasterio, R.Metzler, and G.Oshanin, First passages in bounded domains: When is the mean first passage time meaningful? Phys. Rev. E86(3), 031143(2012)

[29]

P.Ashcroft, A.Traulsen, and T.Galla, When the mean is not enough: Calculating fixation time distributions in birth-death processes, Phys. Rev. E92(4), 042154(2015)

[30]

Y.Zou, T.Pereira, M.Small, Z. H.Liu, and J.Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102(2014)

[31]

S. F.Ma, H. J.Bi, Y.Zou, Z. H.Liu, and S. G.Guan, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 343(2015)

[32]

X.Huang, J.Gao, Y. T.Sun, Z. G.Zheng, and C.Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504(2016)

[33]

C. Q.Wang, A.Pumir, N. B.Garnier, and Z. H.Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901(2017)

[34]

H. B.Chen, Y. T.Sun, J.Gao, C.Xu, and Z. G.Zheng, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504(2017)

[35]

J.Zhang, Y. Z.Yu, and X. G.Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508(2017)

[36]

G.Szabóand C.Töke, Evolutionary prisoner’s dilemma game on a square lattice, Phys. Rev. E58(1), 69(1998)

[37]

P. P.Li, J. H.Ke, Z. Q.Lin, and P. M.Hui, Cooperative behavior in evolutionary snowdrift games with the unconditional imitation rule on regular lattices, Phys. Rev. E85(2), 021111(2012)

[38]

L. Y.Zhang, L. M.Ying, J.Zhou, S. G.Guan, and Y.Zou, Fixation probabilities of evolutionary coordination games on two coupled populations, Phys. Rev. E94(3), 032307(2016)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1280KB)

1026

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/