Landau quantization of Dirac fermions in graphene and its multilayers

Long-Jing Yin (殷隆晶), Ke-Ke Bai (白珂珂), Wen-Xiao Wang (王文晓), Si-Yu Li (李思宇), Yu Zhang (张钰), Lin He (何林)

PDF(66703 KB)
PDF(66703 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127208. DOI: 10.1007/s11467-017-0655-0
REVIEW ARTICLE
REVIEW ARTICLE

Landau quantization of Dirac fermions in graphene and its multilayers

Author information +
History +

Abstract

When electrons are confined in a two-dimensional (2D) system, typical quantum–mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum–mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

Keywords

Landau quantization / graphene / STM/STS / stacking order / strain and defect

Cite this article

Download citation ▾
Long-Jing Yin (殷隆晶), Ke-Ke Bai (白珂珂), Wen-Xiao Wang (王文晓), Si-Yu Li (李思宇), Yu Zhang (张钰), Lin He (何林). Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys., 2017, 12(4): 127208 https://doi.org/10.1007/s11467-017-0655-0

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[3]
K. S. Novoselov, Graphene: Materials in the flatland, Rev. Mod. Phys. 83(3), 837 (2011)
CrossRef ADS Google scholar
[4]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[5]
M. O. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys. 83(4), 1193 (2011)
CrossRef ADS Google scholar
[6]
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
[7]
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
[8]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[9]
A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
CrossRef ADS Google scholar
[10]
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(2), 407 (2011)
CrossRef ADS Google scholar
[11]
D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)
CrossRef ADS Google scholar
[12]
W. Y. He, Z. D. Chu, and L. He, Chiral tunneling in a twisted graphene bilayer, Phys. Rev. Lett. 111(6), 066803 (2013)
CrossRef ADS Google scholar
[13]
F. D. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef ADS Google scholar
[14]
C. Beenakker, Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys. 80(4), 1337 (2008)
CrossRef ADS Google scholar
[15]
A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys. 5(3), 222 (2009)
[16]
J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506(7488), 349 (2014)
CrossRef ADS Google scholar
[17]
Z. Chu and L. He, Origin of room-temperature singlechannel ballistic transport in zigzag graphene nanoribbons, Science China Materials 58(9), 677 (2015)
CrossRef ADS Google scholar
[18]
J. J. Palacios, Graphene nanoribbons: Electrons go ballistic, Nat. Phys. 10(3), 182 (2014)
[19]
B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, Massive Dirac fermions and Hofstadter butterfly in a van der Waals Heterostructure, Science 340(6139), 1427 (2013)
CrossRef ADS Google scholar
[20]
C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Nature 497(7451), 598 (2013)
CrossRef ADS Google scholar
[21]
L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim, Cloning of Dirac fermions in graphene superlattices, Nature 497(7451), 594 (2013)
CrossRef ADS Google scholar
[22]
G. L. Yu, R. V. Gorbachev, J. S. Tu, A. V. Kretinin, Y. Cao, R. Jalil, F. Withers, L. A. Ponomarenko, B. A. Piot, M. Potemski, D. C. Elias, X. Chen, K. Watanabe, T. Taniguchi, I. V. Grigorieva, K. S. Novoselov, V. I. Fal’ko, A. K. Geim, and A. Mishchenko, Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices, Nat. Phys. 10(7), 525 (2014)
[23]
H. Schmidt, J. C. Rode, D. Smirnov, and R. J. Haug, Superlattice structures in twisted bilayers of folded graphene, Nat. Commun. 5, 5742 (2014)
CrossRef ADS Google scholar
[24]
A. M. DaSilva, J. Jung, and A. H. MacDonald, Fractional hofstadter states in graphene on hexagonal boron nitride, Phys. Rev. Lett. 117(3), 036802 (2016)
CrossRef ADS Google scholar
[25]
Y. Barlas, K. Yang, and A. H. MacDonald, Quantum Hall effects in graphene-based two-dimensional electron systems, Nanotechnology 23(5), 052001 (2012)
CrossRef ADS Google scholar
[26]
V. Gusynin and S. Sharapov, Unconventional integer quantum Hall effect in graphene, Phys. Rev. Lett. 95(14), 146801 (2005)
CrossRef ADS Google scholar
[27]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[28]
Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, Quantum Hall states near the charge-neutral Dirac point in graphene, Phys. Rev. Lett. 99(10), 106802 (2007)
CrossRef ADS Google scholar
[29]
K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462(7270), 196 (2009)
CrossRef ADS Google scholar
[30]
X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462(7270), 192 (2009)
CrossRef ADS Google scholar
[31]
C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard, Multicomponent fractional quantum Hall effect in graphene, Nat. Phys. 7(9), 693 (2011)
[32]
R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23(10), 5632 (1981)
CrossRef ADS Google scholar
[33]
T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada, and H. Fukuyama, STS observations of Landau levels at graphite surfaces, Phys. Rev. Lett. 94(22), 226403 (2005)
CrossRef ADS Google scholar
[34]
Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett. 96(13), 136806 (2006)
CrossRef ADS Google scholar
[35]
A. Kou, B. E. Feldman, A. J. Levin, B. I. Halperin, K. Watanabe, T. Taniguchi, and A. Yacoby, Electron–hole asymmetric integer and fractional quantum Hall effect in bilayer graphene, Science 345(6192), 55 (2014)
CrossRef ADS Google scholar
[36]
P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi, K. Watanabe, D. Abanin, Z. Papiće, P. Cadden-Zimansky, J. Hone, P. Kim, and C. R. Dean, Tunable fractional quantum Hall phases in bilayer graphene, Science 345(6192), 61 (2014)
CrossRef ADS Google scholar
[37]
Y. Shi, Y. Lee, S. Che, Z. Pi, T. Espiritu, P. Stepanov, D. Smirnov, C. N. Lau, and F. Zhang, Energy gaps and layer polarization of integer and fractional quantum Hall states in bilayer graphene, Phys. Rev. Lett. 116(5), 056601 (2016)
CrossRef ADS Google scholar
[38]
B. E. Feldman, B. Krauss, J. H. Smet, and A. Yacoby, Unconventional sequence of fractional quantum Hall states in suspended graphene, Science 337(6099), 1196 (2012)
CrossRef ADS Google scholar
[39]
G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Scattering and interference in epitaxial graphene, Science 317(5835), 219 (2007)
CrossRef ADS Google scholar
[40]
K. S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim, and A. Geim, Room-temperature quantum Hall effect in graphene, Science 315(5817), 1379 (2007)
CrossRef ADS Google scholar
[41]
J. G. Checkelsky, L. Li, and N. P. Ong, Zero-energy state in graphene in a high magnetic field, Phys. Rev. Lett. 100(20), 206801 (2008)
CrossRef ADS Google scholar
[42]
Editorial, 2D materials, Nat. Photonics 10(4), 201 (2016)
CrossRef ADS Google scholar
[43]
P. Wallace, The band theory of graphite, Phys. Rev. 71(9), 622 (1947)
CrossRef ADS Google scholar
[44]
A. L. Grushina, D. K. Ki, M. Koshino, A. A. Nicolet, C. Faugeras, E. McCann, M. Potemski, and A. F. Morpurgo, Insulating state in tetralayers reveals an even– odd interaction effect in multilayer graphene, Nat. Commun. 6, 6419 (2015)
CrossRef ADS Google scholar
[45]
L. J. Yin, S. Y. Li, J. B. Qiao, J. C. Nie, and L. He, Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer on graphite surface, Phys. Rev. B 91(11), 115405 (2015)
CrossRef ADS Google scholar
[46]
E. J. Mele, Interlayer coupling in rotationally faulted multilayer graphenes, J. Phys. D Appl. Phys. 45(15), 154004 (2012)
CrossRef ADS Google scholar
[47]
E. McCann and V. Fal’ko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96(8), 086805 (2006)
CrossRef ADS Google scholar
[48]
K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene, Nat. Phys. 2(3), 177 (2006)
[49]
M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Landau level spectroscopy of ultrathin graphite layers, Phys. Rev. Lett. 97(26), 266405 (2006)
CrossRef ADS Google scholar
[50]
D. S. Lee, C. Riedl, T. Beringer, A. H. Castro Neto, K. von Klitzing, U. Starke, and J. H. Smet, Quantum Hall effect in twisted bilayer graphene, Phys. Rev. Lett. 107(21), 216602 (2011)
CrossRef ADS Google scholar
[51]
J. D. Sanchez-Yamagishi, T. Taychatanapat, K. Watanabe, T. Taniguchi, A. Yacoby, and P. Jarillo-Herrero, Quantum Hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene, Phys. Rev. Lett. 108(7), 076601 (2012)
CrossRef ADS Google scholar
[52]
M. Morgenstern, Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates, physica status solidi (b) 248(11), 2423 (2011)
[53]
E. Y. Andrei, G. Li, and X. Du, Electronic properties of graphene: A perspective from scanning tunneling microscopy and magnetotransport, Rep. Prog. Phys. 75(5), 056501 (2012)
CrossRef ADS Google scholar
[54]
A. Deshpande and B. J. LeRoy, Scanning probe microscopy of graphene, Physica E 44(4), 743 (2012)
CrossRef ADS Google scholar
[55]
D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Observing the quantization of zero mass carriers in graphene, Science 324(5929), 924 (2009)
CrossRef ADS Google scholar
[56]
Y. J. Song, A. F. Otte, Y. Kuk, Y. Hu, D. B. Torrance, P. N. First, W. A. de Heer, H. Min, S. Adam, M. D. Stiles, A. H. MacDonald, and J. A. Stroscio, Highresolution tunnelling spectroscopy of a graphene quartet, Nature 467(7312), 185 (2010)
CrossRef ADS Google scholar
[57]
G. Li, A. Luican, and E. Y. Andrei, Scanning tunneling spectroscopy of graphene on graphite, Phys. Rev. Lett. 102(17), 176804 (2009)
CrossRef ADS Google scholar
[58]
Y. Niimi, H. Kambara, T. Matsui, D. Yoshioka, and H. Fukuyama, Real-space imaging of alternate localization and extension of quasi-two-dimensional electronic states at graphite surfaces in magnetic fields, Phys. Rev. Lett. 97(23), 236804 (2006)
CrossRef ADS Google scholar
[59]
M. Morgenstern, J. Klijn, C. Meyer, and R. Wiesendanger, Real-space observation of drift states in a twodimensional electron system at high magnetic fields, Phys. Rev. Lett. 90(5), 056804 (2003)
CrossRef ADS Google scholar
[60]
K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, R. Wiesendanger, and M. Morgenstern, Quantum Hall transition in real space: From localized to extended states, Phys. Rev. Lett. 101(25), 256802 (2008)
CrossRef ADS Google scholar
[61]
Y. Okada, W. Zhou, C. Dhital, D. Walkup, Y. Ran, Z. Wang, S. D. Wilson, and V. Madhavan, Visualizing Landau levels of dirac electrons in a one-dimensional potential, Phys. Rev. Lett. 109(16), 166407 (2012)
CrossRef ADS Google scholar
[62]
P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J. Wang, Y. Wang, B. F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Landau quantization of topological surface states in Bi2Se3, Phys. Rev. Lett. 105(7), 076801 (2010)
CrossRef ADS Google scholar
[63]
Y. Jiang, Y. Wang, M. Chen, Z. Li, C. Song, K. He, L. Wang, X. Chen, X. Ma, and Q. K. Xue, Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3, Phys. Rev. Lett. 108(1), 016401 (2012)
CrossRef ADS Google scholar
[64]
T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3, Phys. Rev. B 82(8), 081305(R) (2010)
[65]
W. Bao, Z. Zhao, H. Zhang, G. Liu, P. Kratz, L. Jing, J. Velasco, D. Smirnov, and C. N. Lau, Magnetoconductance oscillations and evidence for fractional quantum Hall states in suspended bilayer and trilayer graphene, Phys. Rev. Lett. 105(24), 246601 (2010)
CrossRef ADS Google scholar
[66]
E. McCann and M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76(5), 056503 (2013)
CrossRef ADS Google scholar
[67]
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the Electronic Structure of Bilayer Graphene, Science 313(5789), 951 (2006)
CrossRef ADS Google scholar
[68]
Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459(7248), 820 (2009)
CrossRef ADS Google scholar
[69]
E. Castro, K. Novoselov, S. Morozov, N. Peres, J. dos Santos, J. Nilsson, F. Guinea, A. Geim, and A. Neto, Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett. 99(21), 216802 (2007)
CrossRef ADS Google scholar
[70]
G. Li and E. Y. Andrei, Observation of Landau levels of Dirac fermions in graphite, Nat. Phys. 3(9), 623 (2007)
[71]
Y. Niimi, H. Kambara, and H. Fukuyama, Localized distributions of quasi-two-dimensional electronic States near defects artificially created at graphite surfaces in magnetic fields, Phys. Rev. Lett. 102(2), 026803 (2009)
CrossRef ADS Google scholar
[72]
L. J. Yin, Y. Zhang, J. B. Qiao, S. Y. Li, and L. He, Experimental observation of surface states and Landau levels bending in bilayer graphene, Phys. Rev. B 93(12), 125422 (2016)
CrossRef ADS Google scholar
[73]
L. J. Yin, H. Jiang, J. B. Qiao, and L. He, Direct imaging of topological edge states at a bilayer graphene domain wall, Nat. Commun. 7, 11760 (2016)
CrossRef ADS Google scholar
[74]
M. Orlita, C. Faugeras, J. Schneider, G. Martinez, D. Maude, and M. Potemski, Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer, Phys. Rev. Lett. 102(16), 166401 (2009)
CrossRef ADS Google scholar
[75]
W. Yan, S. Y. Li, L. J. Yin, J. B. Qiao, J. C. Nie, and L. He, Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction, Phys. Rev. B 93(19), 195408 (2016)
CrossRef ADS Google scholar
[76]
K. K. Bai, Y. C. Wei, J. B. Qiao, S. Y. Li, L. J. Yin, W. Yan, J. C. Nie, and L. He, Detecting giant electronhole asymmetry in a graphene monolayer generated by strain and charged-defect scattering via Landau level spectroscopy, Phys. Rev. B 92(12), 121405 (2015) (R)
CrossRef ADS Google scholar
[77]
G. M. Rutter, S. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Microscopic polarization in bilayer graphene, Nat. Phys. 7(8), 649 (2011)
[78]
Y. Zhang, S. Y. Li, H. Huang, W. T. Li, J. B. Qiao, W. X. Wang, L. J. Yin, K. K. Bai, W. H. Duan, and L. He, Scanning tunneling microscopy of π magnetism of a single atomic vacancy in graphene, Phys. Rev. Lett. 117(16), 166801 (2016)
CrossRef ADS Google scholar
[79]
E. McCann, Asymmetry gap in the electronic band structure of bilayer graphene, Phys. Rev. B 74(16), 161403(R) (2006)
[80]
K. S. Kim, A. L. Walter, L. Moreschini, T. Seyller, K. Horn, E. Rotenberg, and A. Bostwick, Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene, Nat. Mater. 12(10), 887 (2013)
CrossRef ADS Google scholar
[81]
J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. Vandersypen, Gate-induced insulating state in bilayer graphene devices, Nat. Mater. 7(2), 151 (2008)
CrossRef ADS Google scholar
[82]
K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy, Phys. Rev. Lett. 102(25), 256405 (2009)
CrossRef ADS Google scholar
[83]
M. P. Lima, A. J. R. da Silva, and A. Fazzio, Splitting of the zero-energy edge states in bilayer graphene, Phys. Rev. B 81(4), 045430 (2010)
CrossRef ADS Google scholar
[84]
Y. Zhao, P. Cadden-Zimansky, Z. Jiang, and P. Kim, Symmetry Breaking in the zero-energy Landau level in bilayer graphene, Phys. Rev. Lett. 104(6), 066801 (2010)
CrossRef ADS Google scholar
[85]
M. Nakamura, E. V. Castro, and B. Dóra, Valley symmetry breaking in bilayer graphene: A test of the minimal model, Phys. Rev. Lett. 103(26), 266804 (2009)
CrossRef ADS Google scholar
[86]
K. Shizuya, Pseudo-zero-mode Landau levels and collective excitations in bilayer graphene, Phys. Rev. B 79(16), 165402 (2009)
CrossRef ADS Google scholar
[87]
T. Misumi and K. Shizuya, Electromagnetic response and pseudo-zero-mode Landau levels of bilayer graphene in a magnetic field, Phys. Rev. B 77(19), 195423 (2008)
CrossRef ADS Google scholar
[88]
S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater. 6(10), 770 (2007)
CrossRef ADS Google scholar
[89]
E. A. Henriksen, D. Nandi, and J. P. Eisenstein, Quantum Hall effect and semimetallic behavior of dual-gated ABA-stacked trilayer graphene, Phys. Rev. X 2(1), 011004 (2012)
CrossRef ADS Google scholar
[90]
M. Koshino and E. McCann, Landau level spectra and the quantum Hall effect of multilayer graphene, Phys. Rev. B 83(16), 165443 (2011)
CrossRef ADS Google scholar
[91]
W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7(12), 948 (2011)
[92]
S. H. Jhang, M. F. Craciun, S. Schmidmeier, S. Tokumitsu, S. Russo, M. Yamamoto, Y. Skourski, J. Wosnitza, S. Tarucha, J. Eroms, and C. Strunk, Stacking-order dependent transport properties of trilayer graphene, Phys. Rev. B 84(16), 161408(R) (2011)
[93]
M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4(6), 383 (2009)
CrossRef ADS Google scholar
[94]
C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys. 7(12), 944 (2011)
[95]
T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene, Nat. Phys. 7(8), 621 (2011)
[96]
D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
CrossRef ADS Google scholar
[97]
S. Takei, A. Yacoby, B. I. Halperin, and Y. Tserkovnyak, Spin superfluidity in the ν= 0 quantum Hall state of graphene, Phys. Rev. Lett. 116(21), 216801 (2016)
CrossRef ADS Google scholar
[98]
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448(7153), 571 (2007)
CrossRef ADS Google scholar
[99]
S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, and A. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)
CrossRef ADS Google scholar
[100]
A. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim, Spin and valley quantum Hall ferromagnetism in graphene, Nat. Phys. 8(7), 550 (2012)
[101]
J. Mao, Y. Jiang, D. Moldovan, G. Li, K. Watanabe, T. Taniguchi, M. R. Masir, F. M. Peeters, and E. Y. Andrei, Realization of a tunable artificial atom at a supercritically charged vacancy in graphene, Nat. Phys. 12(6), 545 (2016)
[102]
Y. S. Fu, M. Kawamura, K. Igarashi, H. Takagi, T. Hanaguri, and T. Sasagawa, Imaging the twocomponent nature of Dirac–Landau levels in the topological surface state of Bi2Se3, Nat. Phys. 10(11), 815 (2014)
[103]
H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin-orbit interactions in graphene sheets, Phys. Rev. B 74(16), 165310 (2006)
CrossRef ADS Google scholar
[104]
G. Li, A. Luican-Mayer, D. Abanin, L. Levitov, and E. Y. Andrei, Evolution of Landau levels into edge states in graphene, Nat. Commun. 4, 1744 (2013)
CrossRef ADS Google scholar
[105]
R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S. Novoselov, L. S. Levitov, and A. K. Geim, Detecting topological currents in graphene superlattices, Science 346(6208), 448 (2014)
CrossRef ADS Google scholar
[106]
M. Koshino and T. Ando, Anomalous orbital magnetism in Dirac-electron systems: Role of pseudospin paramagnetism, Phys. Rev. B 81(19), 195431 (2010)
CrossRef ADS Google scholar
[107]
J. L. Lado, J. W. González, and J. Fernández-Rossier, Quantum Hall effect in gapped graphene heterojunctions, Phys. Rev. B 88(3), 035448 (2013)
CrossRef ADS Google scholar
[108]
W. X. Wang, L. J. Yin, J. B. Qiao, T. Cai, S. Y. Li, R. F. Dou, J. C. Nie, X. Wu, and L. He, Atomic resolution imaging of the two-component Dirac-Landau levels in a gapped graphene monolayer, Phys. Rev. B 92(16), 165420 (2015)
CrossRef ADS Google scholar
[109]
V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy, Edge states in quantum Hall effect in graphene, Low Temp. Phys. 34(10), 778 (2008)
CrossRef ADS Google scholar
[110]
M. T. Allen, O. Shtanko, I. C. Fulga, A. R. Akhmerov, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, L. S. Levitov, and A. Yacoby, Spatially resolved edge currents and guided-wave electronic states in graphene, Nat. Phys. 2(12), 128 (2016)
[111]
D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim, and L. S. Levitov, Dissipative quantum Hall effect in graphene near the Dirac point, Phys. Rev. Lett. 98(19), 196806 (2007)
CrossRef ADS Google scholar
[112]
D. A. Abanin, P. A. Lee, and L. S. Levitov, Spin-filtered edge states and quantum Hall effect in graphene, Phys. Rev. Lett. 96(17), 176803 (2006)
CrossRef ADS Google scholar
[113]
H. A. Fertig and L. Brey, Luttinger liquid at the edge of undoped graphene in a strong magnetic field, Phys. Rev. Lett. 97(11), 116805 (2006)
CrossRef ADS Google scholar
[114]
A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H. Choi, K. Watanabe, T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero, Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state, Nature 505(7484), 528 (2014)
CrossRef ADS Google scholar
[115]
P. Maher, C. R. Dean, A. F. Young, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Evidence for a spin phase transition at charge neutrality in bilayer graphene, Nat. Phys. 9(3), 154 (2013)
[116]
K. Lee, B. Fallahazad, J. Xue, D. C. Dillen, K. Kim, T. Taniguchi, K. Watanabe, and E. Tutuc, Chemical potential and quantum Hall ferromagnetism in bilayer graphene, Science 345(6192), 58 (2014)
CrossRef ADS Google scholar
[117]
M. Kharitonov, Canted antiferromagnetic phase of the ν= 0 quantum Hall state in bilayer graphene, Phys. Rev. Lett. 109(4), 046803 (2012)
CrossRef ADS Google scholar
[118]
K. Nomura and A. H. MacDonald, Quantum Hall ferromagnetism in graphene, Phys. Rev. Lett. 96(25), 256602 (2006)
CrossRef ADS Google scholar
[119]
H. Ito, K. Furuya, Y. Shibata, S. Kashiwaya, M. Yamaguchi, T. Akazaki, H. Tamura, Y. Ootuka, and S. Nomura, Near-field optical mapping of quantum Hall edge states, Phys. Rev. Lett. 107(25), 256803 (2011)
CrossRef ADS Google scholar
[120]
K. Lai, W. Kundhikanjana, M. A. Kelly, Z. X. Shen, J. Shabani, and M. Shayegan, Imaging of coulomb-driven quantum Hall edge states, Phys. Rev. Lett. 107(17), 176809 (2011)
CrossRef ADS Google scholar
[121]
J. Tian, Y. Jiang, I. Childres, H. Cao, J. Hu, and Y. P. Chen, Quantum Hall effect in monolayer-bilayer graphene planar junctions, Phys. Rev. B 88(12), 125410 (2013)
CrossRef ADS Google scholar
[122]
Y. Kobayashi, K. i. Fukui, T. Enoki, and K. Kusakabe, Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy, Phys. Rev. B 73(12), 125415 (2006)
CrossRef ADS Google scholar
[123]
Y. Kobayashi, K. i. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71(19), 193406 (2005)
CrossRef ADS Google scholar
[124]
K. A. Ritter and J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8(3), 235 (2009)
CrossRef ADS Google scholar
[125]
C. Tao, L. Jiao, O. V. Yazyev, Y. C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, Spatially resolving edge states of chiral graphene nanoribbons, Nat. Phys. 7(8), 616 (2011)
[126]
J. Xue, J. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, Longwavelength local density of states oscillations near graphene step edges, Phys. Rev. Lett. 108(1), 016801 (2012)
CrossRef ADS Google scholar
[127]
Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Phys. Rev. B 73(8), 085421 (2006)
CrossRef ADS Google scholar
[128]
Y. Y. Li, M. X. Chen, M. Weinert, and L. Li, Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons, Nat. Commun. 5, 4311 (2014)
CrossRef ADS Google scholar
[129]
E. Castro, N. Peres, J. Lopes dos Santos, A. Neto, and F. Guinea, Localized States at Zigzag Edges of Bilayer Graphene, Phys. Rev. Lett. 100(2), 026802 (2008)
CrossRef ADS Google scholar
[130]
E. V. Castro, N. M. R. Peres, and J. M. B. Lopes dos Santos, Localized states at zigzag edges of multilayer graphene and graphite steps, Europhys. Lett. 84(1), 17001 (2008)
CrossRef ADS Google scholar
[131]
T. Wassmann, A. Seitsonen, A. Saitta, M. Lazzeri, and F. Mauri, Structure, stability, edge states, and aromaticity of graphene ribbons, Phys. Rev. Lett. 101(9), 096402 (2008)
CrossRef ADS Google scholar
[132]
E. V. Castro, M. P. López-Sancho, and M. A. H. Vozmediano, New type of vacancy-induced localized states in multilayer graphene, Phys. Rev. Lett. 104(3), 036802 (2010)
CrossRef ADS Google scholar
[133]
M. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
CrossRef ADS Google scholar
[134]
Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
CrossRef ADS Google scholar
[135]
G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514(7524), 608 (2014)
CrossRef ADS Google scholar
[136]
D. A. Abanin, P. A. Lee, and L. S. Levitov, Charge and spin transport at the quantum Hall edge of graphene, Solid State Commun. 143(1–2), 77 (2007)
CrossRef ADS Google scholar
[137]
L. Brey and H. A. Fertig, Edge states and the quantized Hall effect in graphene, Phys. Rev. B 73(19), 195408 (2006)
CrossRef ADS Google scholar
[138]
V. Mazo, E. Shimshoni, and H. A. Fertig, Edge states of bilayer graphene in the quantum Hall regime, Phys. Rev. B 84(4), 045405 (2011)
CrossRef ADS Google scholar
[139]
D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Electrostatics of edge channels, Phys. Rev. B 46(7), 4026 (1992)
CrossRef ADS Google scholar
[140]
C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. F. Dresselhaus, and M. S. Dresselhaus, Raman characterization of ABA- and ABC-stacked trilayer graphene, ACS Nano 5(11), 8760 (2011)
CrossRef ADS Google scholar
[141]
C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Imaging stacking order in few-layer graphene, Nano Lett. 11(1), 164 (2011)
CrossRef ADS Google scholar
[142]
L. J. Yin, J. B. Qiao, and L. He, Structures and electronic properties of twisted bilayer graphene, Progress in Physics 36(3), 65 (2016) (in Chinese)
[143]
C. Park, J. Ryou, S. Hong, B. G. Sumpter, G. Kim, and M. Yoon, Electronic properties of bilayer graphene strongly coupled to interlayer stacking and an external electric field, Phys. Rev. Lett. 115(1), 015502 (2015)
CrossRef ADS Google scholar
[144]
J. Yin, H. Wang, H. Peng, Z. Tan, L. Liao, L. Lin, X. Sun, A. L. Koh, Y. Chen, H. Peng, and Z. Liu, Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity, Nat. Commun. 7, 10699 (2016)
CrossRef ADS Google scholar
[145]
W. Y. He, Y. Su, M. Yang, and L. He, Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer, Phys. Rev. B 89(12), 125418 (2014)
CrossRef ADS Google scholar
[146]
B. Butz, C. Dolle, F. Niekiel, K. Weber, D. Waldmann, H. B. Weber, B. Meyer, and E. Spiecker, Dislocations in bilayer graphene, Nature 505(7484), 533 (2014)
CrossRef ADS Google scholar
[147]
J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown, J. Park, D. A. Muller, and P. L. McEuen, Strain solitons and topological defects in bilayer graphene, Proc. Natl. Acad. Sci. USA 110(28), 11256 (2013)
CrossRef ADS Google scholar
[148]
J. Lin, W. Fang, W. Zhou, A. R. Lupini, J. C. Idrobo, J. Kong, S. J. Pennycook, and S. T. Pantelides, AC/AB stacking boundaries in bilayer graphene, Nano Lett. 13(7), 3262 (2013)
CrossRef ADS Google scholar
[149]
M. Koshino, Electronic transmission through AB-BA domain boundary in bilayer graphene, Phys. Rev. B 88(11), 115409 (2013)
CrossRef ADS Google scholar
[150]
L. J. Yin, W. X. Wang, Y. Zhang, Y. Y. Ou, H. T. Zhang, C. Y. Shen, and L. He, Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene, Phys. Rev. B 95(8), 081402(R) (2017)
[151]
L. Jiang, Z. Shi, B. Zeng, S. Wang, J. H. Kang, T. Joshi, C. Jin, L. Ju, J. Kim, T. Lyu, Y. R. Shen, M. Crommie, H. J. Gao, and F. Wang, Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15(8), 840 (2016)
CrossRef ADS Google scholar
[152]
F. Zhang, A. H. MacDonald, and E. J. Mele, Valley Chern numbers and boundary modes in gapped bilayer graphene, Proc. Natl. Acad. Sci. USA 110(26), 10546 (2013)
CrossRef ADS Google scholar
[153]
A. Vaezi, Y. Liang, D. H. Ngai, L. Yang, and E. A. Kim, Topological edge states at a tilt boundary in gated multilayer graphene, Phys. Rev. X 3(2), 021018 (2013)
CrossRef ADS Google scholar
[154]
J. Jung, F. Zhang, Z. Qiao, and A. H. MacDonald, Valley-Hall kink and edge states in multilayer graphene, Phys. Rev. B 84(7), 075418 (2011)
CrossRef ADS Google scholar
[155]
L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, C. Velasco, H. A. Ojeda-Aristizabal, M. C. Bechtel, A. Martin, J. Zettl, Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
CrossRef ADS Google scholar
[156]
P. San-Jose, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, and F. Guinea, Stacking boundaries and transport in bilayer graphene, Nano Lett. 14(4), 2052 (2014)
CrossRef ADS Google scholar
[157]
D. Pierucci, H. Sediri, M. Hajlaoui, J. C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M. G. Silly, G. Ferro, V. Soulière, M. Marangolo, F. Sirotti, F. Mauri, and A. Ouerghi, evidence for flat bands near the Fermi level in epitaxial rhombohedral multilayer graphene, ACS Nano 9(5), 5432 (2015)
CrossRef ADS Google scholar
[158]
P. Xu, Y. Yang, D. Qi, S. D. Barber, M. L. Ackerman, J. K. Schoelz, T. B. Bothwell, S. Barraza-Lopez, L. Bellaiche, and P. M. Thibado, A pathway between Bernal and rhombohedral stacked graphene layers with scanning tunneling microscopy, Appl. Phys. Lett. 100(20), 201601 (2012)
CrossRef ADS Google scholar
[159]
I. Martin, Y. Blanter, and A. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)
CrossRef ADS Google scholar
[160]
M. Zarenia, J. M. Pereira, G. A. Farias, and F. M. Peeters, Chiral states in bilayer graphene: Magnetic field dependence and gap opening, Phys. Rev. B 84(12), 125451 (2011)
CrossRef ADS Google scholar
[161]
W. Yao, S. Yang, and Q. Niu, Edge states in graphene: From gapped flat-band to gapless chiral modes, Phys. Rev. Lett. 102(9), 096801 (2009)
CrossRef ADS Google scholar
[162]
L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak, The experimental observation of quantum Hall effect of l= 3 chiral quasiparticles in trilayer graphene, Nat. Phys. 7(12), 953 (2011)
[163]
S. Yuan, R. Roldán, and M. I. Katsnelson, Landau level spectrum of ABA- and ABC-stacked trilayer graphene, Phys. Rev. B 84(12), 125455 (2011)
CrossRef ADS Google scholar
[164]
M. G. Menezes, R. B. Capaz, and S. G. Louie, Ab initio quasiparticle band structure of ABA- and ABC-stacked graphene trilayers, Phys. Rev. B 89(3), 035431 (2014)
CrossRef ADS Google scholar
[165]
F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Band structure of ABC-stacked graphene trilayers, Phys. Rev. B 82(3), 035409 (2010)
CrossRef ADS Google scholar
[166]
Y. Barlas, R. Cote, and M. Rondeau, Quantum Hall to charge-density-wave phase transitions in ABC-trilayer graphene, Phys. Rev. Lett. 109(12), 126804 (2012)
CrossRef ADS Google scholar
[167]
R. Côté, M. Rondeau, A. M. Gagnon, and Y. Barlas, Phase diagram of insulating crystal and quantum Hall states in ABC-stacked trilayer graphene, Phys. Rev. B 86(12), 125422 (2012)
CrossRef ADS Google scholar
[168]
R. Xu, L. J. Yin, J. B. Qiao, K. K. Bai, J. C. Nie, and L. He, Direct probing of the stacking order and electronic spectrum of rhombohedral trilayer graphene with scanning tunneling microscopy, Phys. Rev. B 91(3), 035410 (2015)
CrossRef ADS Google scholar
[169]
S. H. R. Sena, J. M. Pereira, F. M. Peeters, and G. A. Farias, Landau levels in asymmetric graphene trilayers, Phys. Rev. B 84(20), 205448 (2011)
CrossRef ADS Google scholar
[170]
M. Koshino and E. McCann, Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene, Phys. Rev. B 80(16), 165409 (2009)
CrossRef ADS Google scholar
[171]
F. Guinea, A. Castro Neto, and N. Peres, Electronic states and Landau levels in graphene stacks, Phys. Rev. B 73(24), 245426 (2006)
CrossRef ADS Google scholar
[172]
J. Jung and A. H. MacDonald, Gapped broken symmetry states in ABC-stacked trilayer graphene, Phys. Rev. B 88(7), 075408 (2013)
CrossRef ADS Google scholar
[173]
F. Zhang, D. Tilahun, and A. H. MacDonald, Hund’s rules for the N= 0 Landau levels of trilayer graphene, Phys. Rev. B 85(16), 165139 (2012)
CrossRef ADS Google scholar
[174]
R. Bistritzer and A. H. MacDonald, Moiré butterflies in twisted bilayer graphene, Phys. Rev. B 84(3), 035440 (2011)
CrossRef ADS Google scholar
[175]
E. J. Mele, Commensuration and interlayer coherence in twisted bilayer graphene, Phys. Rev. B 81(16), 161405(R) (2010)
[176]
P. Moon and M. Koshino, Energy spectrum and quantum Hall effect in twisted bilayer graphene, Phys. Rev. B 85(19), 195458 (2012)
CrossRef ADS Google scholar
[177]
L. Wang, Y. Gao, B. Wen, Z. Han, T. Taniguchi, K. Watanabe, M. Koshino, J. Hone, and C. R. Dean, Evidence for a fractional fractal quantum Hall effect in graphene superlattices, Science 350(6265), 1231 (2015)
CrossRef ADS Google scholar
[178]
G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro Neto, A. Reina, J. Kong, and E. Y. Andrei, Observation of Van Hove singularities in twisted graphene layers, Nat. Phys.6(2), 109 (2009)
[179]
W. Yan, M. Liu, R. F. Dou, L. Meng, L. Feng, Z. D. Chu, Y. Zhang, Z. Liu, J. C. Nie, and L. He, Angledependent van Hove singularities in a slightly twisted graphene bilayer, Phys. Rev. Lett. 109(12), 126801 (2012)
CrossRef ADS Google scholar
[180]
I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, M. M. Ugeda, L. Magaud, J. M. Gómez-Rodríguez, F. Ynduráin, and J. Y. Veuillen, Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis, Phys. Rev. Lett. 109(19), 196802 (2012)
CrossRef ADS Google scholar
[181]
W. Yan, L. Meng, M. Liu, J. B. Qiao, Z. D. Chu, R. F. Dou, Z. Liu, J. C. Nie, D. G. Naugle, and L. He, Angledependent van Hove singularities and their breakdown in twisted graphene bilayers, Phys. Rev. B 90(7), 115402 (2014)
CrossRef ADS Google scholar
[182]
L. J. Yin, J. B. Qiao, W. X. Wang, W. J. Zuo, W. Yan, R. Xu, R. F. Dou, J. C. Nie, and L. He, Landau quantization and Fermi velocity renormalization in twisted graphene bilayers, Phys. Rev. B 92(20), 201408(R) (2015)
[183]
A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, Single-layer behavior and its breakdown in twisted graphene layers, Phys. Rev. Lett. 106(12), 126802 (2011)
CrossRef ADS Google scholar
[184]
L. J. Yin, J. B. Qiao, W. J. Zuo, W. T. Li, and L. He, Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers, Phys. Rev. B 92(8), 081406(R) (2015)
[185]
P. San-Jose, J. González, and F. Guinea, Non-Abelian gauge potentials in graphene bilayers, Phys. Rev. Lett. 108(21), 216802 (2012)
CrossRef ADS Google scholar
[186]
E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Flat bands in slightly twisted bilayer graphene: Tight-binding calculations, Phys. Rev. B 82(12), 121407 (2010)
CrossRef ADS Google scholar
[187]
G. Trambly de Laissardière, D. Mayou, and L. Magaud, Localization of Dirac electrons in rotated graphene bilayers, Nano Lett. 10(3), 804 (2010)
CrossRef ADS Google scholar
[188]
R. Bistritzer, and A. H. MacDonald, Moire bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. USA 108(30), 12233 (2011)
CrossRef ADS Google scholar
[189]
J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Graphene bilayer with a twist: Electronic structure, Phys. Rev. Lett. 99(25), 256802 (2007)
CrossRef ADS Google scholar
[190]
J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Continuum model of the twisted graphene bilayer, Phys. Rev. B 86(15), 155449 (2012)
CrossRef ADS Google scholar
[191]
A. O. Sboychakov, A. L. Rakhmanov, A. V. Rozhkov, and F. Nori, Electronic spectrum of twisted bilayer graphene, Phys. Rev. B 92(7), 075402 (2015)
CrossRef ADS Google scholar
[192]
Z. D. Chu, W. Y. He, and L. He, Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer, Phys. Rev. B 87(15), 155419 (2013)
CrossRef ADS Google scholar
[193]
D. Wong, Y. Wang, J. Jung, S. Pezzini, A. M. DaSilva, H. Z. Tsai, H. S. Jung, R. Khajeh, Y. Kim, J. Lee, S. Kahn, S. Tollabimazraehno, H. Rasool, K. Watanabe, T. Taniguchi, A. Zettl, S. Adam, A. H. MacDonald, and M. F. Crommie, Local spectroscopy of moiré induced electronic structure in gate-tunable twisted bilayer graphene, Phys. Rev. B 92(15), 155409 (2015)
CrossRef ADS Google scholar
[194]
B. Cheng, Y. Wu, P. Wang, C. Pan, T. Taniguchi, K. Watanabe, and M. Bockrath, Gate-tunable Landau level filling and spectroscopy in coupled massive and massless electron systems, Phys. Rev. Lett. 117(2), 026601 (2016)
CrossRef ADS Google scholar
[195]
J. B. Qiao, and L. He, In-plane chiral tunneling and outof- plane valley-polarized quantum tunneling in twisted graphene trilayer, Phys. Rev. B 90(7), 075410 (2014)
CrossRef ADS Google scholar
[196]
L. J. Yin, J. B. Qiao, W. X. Wang, Z. D. Chu, K. F. Zhang, R. F. Dou, C. L. Gao, J. F. Jia, J. C. Nie, and L. He, Tuning structures and electronic spectra of graphene layers with tilt grain boundaries, Phys. Rev. B 89(20), 205410 (2014)
CrossRef ADS Google scholar
[197]
L. J. Yin, J. B. Qiao, W. Yan, R. Xu, R. F. Dou, J. C. Nie, and L. He, Electronic structures and their Landau quantizations in twisted graphene bilayer and trilayer, arXiv: 1410.1621 (2014)
[198]
K. K. Bai, Y. Zhou, H. Zheng, L. Meng, H. Peng, Z. Liu, J. C. Nie, and L. He, Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer, Phys. Rev. Lett. 113(8), 086102 (2014)
CrossRef ADS Google scholar
[199]
W. Yan, W. Y. He, Z. D. Chu, M. Liu, L. Meng, R. F. Dou, Y. Zhang, Z. Liu, J. C. Nie, and L. He, Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer, Nat. Commun. 4, 2159 (2013)
CrossRef ADS Google scholar
[200]
H. Yan, C. C. Liu, K. K. Bai, X. Wang, M. Liu, W. Yan, L. Meng, Y. Zhang, Z. Liu, R. Dou, J. C. Nie, Y. Yao, and L. He, Electronic structures of graphene layers on a metal foil: The effect of atomic-scale defects, Appl. Phys. Lett. 103(14), 143120 (2013)
CrossRef ADS Google scholar
[201]
S. Jung, G. M. Rutter, N. N. Klimov, D. B. Newell, I. Calizo, A. R. Hight-Walker, N. B. Zhitenev, and J. A. Stroscio, Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots, Nat. Phys. 7(3), 245 (2011)
[202]
Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, Origin of spatial charge inhomogeneity in graphene, Nat. Phys. 5, 722 (2009)
[203]
H. Yan, Y. Sun, L. He, J. C. Nie, and M. H. W. Chan, Observation of Landau-level-like quantization at 77 K along a strained-induced graphene ridge, Phys. Rev. B 85(3), 035422 (2012)
CrossRef ADS Google scholar
[204]
N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie, Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles, Science 329(5991), 544 (2010)
CrossRef ADS Google scholar
[205]
L. Meng, W. Y. He, H. Zheng, M. Liu, H. Yan, W. Yan, Z. D. Chu, K. Bai, R. F. Dou, Y. Zhang, Z. Liu, J. C. Nie, and L. He, Strain-induced one-dimensional Landau level quantization in corrugated graphene, Phys. Rev. B 87(20), 205405 (2013)
CrossRef ADS Google scholar
[206]
J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nat. Phys. 4(5), 377 (2008)
[207]
J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus, Gate-controlled guiding of electrons in graphene, Nat. Nanotechnol. 6(4), 222 (2011)
CrossRef ADS Google scholar
[208]
Y. Wang, V. W. Brar, A. V. Shytov, Q. Wu, W. Regan, H. Z. Tsai, A. Zettl, L. S. Levitov, and M. F. Crommie, Mapping Dirac quasiparticles near a single Coulomb impurity on graphene, Nat. Phys. 8(9), 653 (2012)
[209]
M. Kühne, C. Faugeras, P. Kossacki, A. A. L. Nicolet, M. Orlita, Y. I. Latyshev, and M. Potemski, Polarization-resolved magneto-Raman scattering of graphenelike domains on natural graphite, Phys. Rev. B 85(19), 195406 (2012)
CrossRef ADS Google scholar
[210]
A. Kretinin, G. L. Yu, R. Jalil, Y. Cao, F. Withers, A. Mishchenko, M. I. Katsnelson, K. S. Novoselov, A. K. Geim, and F. Guinea, Quantum capacitance measurements of electron–hole asymmetry and next-nearestneighbor hopping in graphene, Phys. Rev. B 88(16), 165427 (2013)
CrossRef ADS Google scholar
[211]
V. M. Pereira, J. Nilsson, and A. H. Castro Neto, Coulomb impurity problem in graphene, Phys. Rev. Lett. 99(16), 166802 (2007)
CrossRef ADS Google scholar
[212]
D. S. Novikov, Elastic scattering theory and transport in graphene, Phys. Rev. B 76(24), 245435 (2007)
CrossRef ADS Google scholar
[213]
D. S. Novikov, Numbers of donors and acceptors from transport measurements in graphene, Appl. Phys. Lett. 91(10), 102102 (2007)
CrossRef ADS Google scholar
[214]
S. Y. Li, K. K. Bai, L. J. Yin, J. B. Qiao, W. X. Wang, and L. He, Observation of unconventional splitting of Landau levels in strained graphene, Phys. Rev. B 92(24), 245302 (2015)
CrossRef ADS Google scholar
[215]
F. de Juan, A. Cortijo, M. A. H. Vozmediano, and A. Cano, Aharonov–Bohm interferences from local deformations in graphene, Nat. Phys. 7(10), 810 (2011)
[216]
M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Gauge fields in graphene, Phys. Rep. 496(4–5), 109 (2010)
CrossRef ADS Google scholar
[217]
B. Uchoa, and Y. Barlas, Superconducting states in pseudo-Landau-levels of strained graphene, Phys. Rev. Lett. 111(4), 046604 (2013)
CrossRef ADS Google scholar
[218]
B. Roy, Z. X. Hu, and K. Yang, Theory of unconventional quantum Hall effect in strained graphene, Phys. Rev. B 87(12), 121408(R) (2013)
[219]
D. A. Abanin and D. A. Pesin, Interaction-induced topological insulator states in strained graphene, Phys. Rev. Lett. 109(6), 066802 (2012)
CrossRef ADS Google scholar
[220]
B. Roy, Odd integer quantum Hall effect in graphene, Phys. Rev. B 84(3), 035458 (2011)
CrossRef ADS Google scholar
[221]
D. B. Zhang, G. Seifert, and K. Chang, Strain-induced pseudomagnetic fields in twisted graphene nanoribbons, Phys. Rev. Lett. 112(9), 096805 (2014)
CrossRef ADS Google scholar
[222]
L. Tapasztó, T. Dumitricǎ, S. J. Kim, P. Nemes-Incze, C. Hwang, and L. P. Biró, Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene, Nat. Phys. 8(10), 739 (2012)
[223]
F. Guinea, M. Katsnelson, and M. Vozmediano, Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B 77(7), 075422 (2008)
CrossRef ADS Google scholar
[224]
T. O. Wehling, A. V. Balatsky, A. M. Tsvelik, M. I. Katsnelson, and A. I. Lichtenstein, Midgap states in corrugated graphene: Ab initio calculations and effective field theory, EPL (Europhysics Letters) 84(1), 17003 (2008)
CrossRef ADS Google scholar
[225]
F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys. 6(1), 30 (2010)
[226]
Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, Generation of pure bulk valley current in graphene, Phys. Rev. Lett. 110(4), 046601 (2013)
CrossRef ADS Google scholar
[227]
Z. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang, Valley-dependent Brewster angles and Goos–Hanchen effect in strained graphene, Phys. Rev. Lett. 106(17), 176802 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(66703 KB)

Accesses

Citations

Detail

Sections
Recommended

/