Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk

Hao Hu , Xiaosong Chen , Youjin Deng

Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 120503

PDF (378KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 120503 DOI: 10.1007/s11467-016-0646-6
RESEARCH ARTICLE

Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk

Author information +
History +
PDF (378KB)

Abstract

We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies the balance condition. Its performance improves significantly compared to that of the Berretti–Sokal algorithm, which is a variant of the Metropolis–Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L= 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, υ*= 2/d and γ/υ*= d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate.

Keywords

Monte Carlo algorithms / self-avoiding walk / irreversible / balance condition

Cite this article

Download citation ▾
Hao Hu, Xiaosong Chen, Youjin Deng. Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk. Front. Phys., 2017, 12(1): 120503 DOI:10.1007/s11467-016-0646-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University, Ithaca, 1979

[2]

P. G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A 38(5), 339 (1972)

[3]

E. J. Janse van Rensburg, Monte Carlo methods for the self-avoiding walk, J. Phys. A Math. Theor. 42(32), 323001 (2009)

[4]

J. R. Norris, Markov Chains, Cambridge University Press, 1998

[5]

H. Suwa and S. Todo, Markov chain Monte Carlo method without detailed balance, Phys. Rev. Lett. 105(12), 120603 (2010)

[6]

S. Todo and H. Suwa, Geometric allocation approaches in Markov chain Monte Carlo, J. Phys. Conf. Ser. 473, 012013 (2013)

[7]

K. S. Turitsyn, M. Chertkov, and M. Vucelja, Irreversible Monte Carlo algorithms for efficient sampling, Physica D 240(4–5), 410 (2011)

[8]

H. C. M. Fernandes and M. Weigel, Non-reversible Monte Carlo simulations of spin models, Comput. Phys. Commun. 182(9), 1856 (2011)

[9]

E. Bernard, W. Krauth, and D. Wilson, Event-chain Monte Carlo algorithms for hard-sphere systems, Phys. Rev. E 80(5), 056704 (2009)

[10]

M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods, Phys. Rev. E 87(4), 042134 (2013)

[11]

M. Michel, S. C. Kapfer, and W. Krauth, Generalized event-chain Monte Carlo: Constructing rejection-free global balance algorithms from infinitesimal steps, J. Chem. Phys. 140(5), 054116 (2014)

[12]

S. C. Kapfer and W. Krauth, Soft-disk melting: From liquid-hexatic coexistence to continuous transitions, Phys. Rev. Lett. 114(3), 035702 (2015)

[13]

M. Michel, J. Mayer, and W. Krauth, Event-chain Monte Carlo for classical continuous spin models, EPL 112(2), 20003 (2015)

[14]

Y. Nishikawa, M. Michel, W. Krauth, and K. Hukushima, Event-chain algorithm for the Heisenberg model: Evidence for z~1 dynamic scaling, Phys. Rev. E 92(6), 063306 (2015)

[15]

K. Hukushima and Y. Sakai, An irreversible Markovchain Monte Carlo method with skew detailed balance conditions, J. Phys. Conf. Ser. 473, 012012 (2013)

[16]

Y. Sakai and K. Hukushima, Dynamics of onedimensional Ising model without detailed balance condition, J. Phys. Soc. Jpn. 82(6), 064003 (2013)

[17]

R. D. Schram and G. T. Barkema, Monte Carlo methods beyond detailed balance, Physica A 418, 88 (2015)

[18]

A. Berretti and A. D. Sokal, New Monte Carlo method for the self-avoiding walk,J. Stat. Phys. 40(3–4), 483 (1985)

[19]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21(6), 1087 (1953)

[20]

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57(1), 97 (1970)

[21]

I. Jensen, A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, J. Phys. Math. Gen. 36(21), 5731 (2003)

[22]

J. L. Jacobsen, C. R. Scullard, and A. J. Guttmann, On the growth constant for square-lattice self-avoiding walks, arXiv: 1607.02984 (2016)

[23]

H. P. Hsu and P. Grassberger, Polymers confined between two parallel plane walls, J. Chem. Phys. 120(4), 2034 (2004)

[24]

A. L. Owczarek and T. Prellberg, Scaling of selfavoiding walks in high dimensions, J. Phys. Math. Gen. 34(29), 5773 (2001)

[25]

H. Müller-Krumbhaar and K. Binder, Dynamic properties of the Monte Carlo method in statistical mechanics, J. Stat. Phys. 8, 1 (1973)

[26]

K. Binder, M. Nauenberg, V. Privman, and A. P. Young, Finite-size tests of hyperscaling, Phys. Rev. B 31(3), 3 (1985)

[27]

B. Berche, R. Kenna, and J. C. Walter, Hyperscaling above the upper critical dimension, Nucl. Phys. B 865(1), 115 (2012)

[28]

F. Flores-Sola, B. Berche, R. Kenna, and M. Weigel, Role of Fourier modes in finite-size scaling above the upper critical dimension, Phys. Rev. Lett. 116(11), 115701 (2016)

[29]

M. Wittmann and A. P. Young, Finite-size scaling above the upper critical dimension, Phys. Rev. E 90(6), 062137 (2014)

[30]

Y. Deng, T. M. Garoni, and A. D. Sokal, Dynamic critical behavior of the worm algorithm for the Ising model, Phys. Rev. Lett. 99(11), 110601 (2007)

[31]

E. Brézin and J. Zinn-Justin, Finite size effects in phase transitions, Nucl. Phys. B 257, 867 (1985)

[32]

N. Prokofev, B. Svistunov, and I. Tupitsyn, Worm algorithm in quantum Monte Carlo simulations, Phys. Lett. A 238(4–5), 253 (1998)

[33]

N. Prokofev and B. Svistunov, Worm algorithms for classical statistical models, Phys. Rev. Lett. 87(16), 160601 (2001)

[34]

P. P. Nidras, Grand canonical simulations of the interacting self-avoiding walk model, J. Phys. Math. Gen. 29(24), 7929 (1996)

[35]

N. Madras and A. D. Sokal, The Pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk, J. Stat. Phys. 50(1–2), 109 (1988)

[36]

P. Grassberger, Pruned-enriched Rosenbluth method: Simulation of q-polymers of chain length up to 1000 000, Phys. Rev. E 56(3), 3682 (1997)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (378KB)

1184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/