Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk
Hao Hu , Xiaosong Chen , Youjin Deng
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 120503
Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk
We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies the balance condition. Its performance improves significantly compared to that of the Berretti–Sokal algorithm, which is a variant of the Metropolis–Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L= 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, υ*= 2/d and γ/υ*= d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate.
Monte Carlo algorithms / self-avoiding walk / irreversible / balance condition
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |