Floquet control of the gain and loss in a PT-symmetric optical coupler

Yi Wu, Bo Zhu, Shu-Fang Hu, Zheng Zhou, Hong-Hua Zhong

Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 121102.

PDF(902 KB)
PDF(902 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 121102. DOI: 10.1007/s11467-016-0642-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Floquet control of the gain and loss in a PT-symmetric optical coupler

Author information +
History +

Abstract

Controlling the balanced gain and loss in a PT-symmetric system is a rather challenging task. Utilizing Floquet theory, we explore the constructive role of periodic modulation in controlling the gain and loss of a PT-symmetric optical coupler. It is found that the gain and loss of the system can be manipulated by applying a periodic modulation. Further, such an original non-Hermitian system can even be modulated into an effective Hermitian system derived by the high-frequency Floquet method. Therefore, compared with other PT symmetry control schemes, our protocol can modulate the unbroken PT-symmetric range to a wider parameter region. Our results provide a promising approach for controlling the gain and loss of a realistic system.

Keywords

PT symmetry / periodic modulation / optical coupler

Cite this article

Download citation ▾
Yi Wu, Bo Zhu, Shu-Fang Hu, Zheng Zhou, Hong-Hua Zhong. Floquet control of the gain and loss in a PT-symmetric optical coupler. Front. Phys., 2017, 12(1): 121102 https://doi.org/10.1007/s11467-016-0642-x

References

[1]
S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, Nonlinear switching and solitons in PT-symmetric photonic systems, Laser Photonics Rev. 10(2), 177 (2016)
CrossRef ADS Google scholar
[2]
V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in PT-symmetric systems, Rev. Mod. Phys. 88(3), 035002 (2016)
CrossRef ADS Google scholar
[3]
N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge: Cambridge University Press, 2011
CrossRef ADS Google scholar
[4]
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity-time symmetric microring lasers, Science 346(6212), 975 (2014)
CrossRef ADS Google scholar
[5]
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity-time symmetry breaking, Science 346(6212), 972 (2014)
CrossRef ADS Google scholar
[6]
L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2012)
CrossRef ADS Google scholar
[7]
B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
CrossRef ADS Google scholar
[8]
F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej- Farshi, D. N. Christodoulides, and T. Kottos, Optical isolation via PT-symmetric nonlinear Fano resonances, Opt. Express 22(8), 9574 (2014)
CrossRef ADS Google scholar
[9]
H. Xiong, L. Si, X. Yang, and Y. Wu, Asymmetric optical transmission in an optomechanical array, Appl. Phys. Lett. 107(9), 091116 (2015)
CrossRef ADS Google scholar
[10]
S. Longhi and L. Feng, PT-symmetric microring laser absorber, Opt. Lett. 39(17), 5026 (2014)
CrossRef ADS Google scholar
[11]
V. A. Vysloukh and Y. V. Kartashov, Resonant mode conversion in the waveguides with unbroken and broken PT symmetry, Opt. Lett. 39(20), 5933 (2014)
CrossRef ADS Google scholar
[12]
J. Gan, H. Xiong, L. Si, X. Lü, and Y. Wu, Soliton in optomechanical arrays, Opt. Lett. 41(12), 2676 (2016)
CrossRef ADS Google scholar
[13]
H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity-time-symmetric coupled microring lasers operating around an exceptional point, Opt. Lett. 40(21), 4955 (2015)
CrossRef ADS Google scholar
[14]
X. Lü, H. Jing, J. Ma, and Y. Wu, PT-symmetrybreaking chaos in optomechanics, Phys. Rev. Lett. 114(25), 253601 (2015)
CrossRef ADS Google scholar
[15]
H. Jing, S. K. Ozdemir, X. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
CrossRef ADS Google scholar
[16]
Y. V. Kartashov, V. A. Vysloukh, V. V. Konotop, and L. Torner, Diffraction control in PT-symmetric photonic lattices: From beam rectification to dynamic localization, Phys. Rev. A 93(1), 013841 (2016)
CrossRef ADS Google scholar
[17]
J. Li, J. Li, Q. Xiao, and Y. Wu, Giant enhancement of optical high-order sideband generation and their control in a dimer of two cavities with gain and loss, Phys. Rev. A 93(6), 063814 (2016)
CrossRef ADS Google scholar
[18]
H. Wang, Multi-peak solitons in PT-symmetric Bessel optical lattices with defects, Front. Phys. 11(5), 114204 (2016)
CrossRef ADS Google scholar
[19]
C. M. Bender and S. Boettcher, Real spectra in Non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
CrossRef ADS Google scholar
[20]
C. M. Bender, Making Sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)
CrossRef ADS Google scholar
[21]
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity-time symmetry in optics, Nat. Phys. 6(3), 192 (2010)
CrossRef ADS Google scholar
[22]
A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)
CrossRef ADS Google scholar
[23]
A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Parity-time synthetic photonic lattices, Nature 488(7410), 167 (2012)
CrossRef ADS Google scholar
[24]
S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, PT symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)
CrossRef ADS Google scholar
[25]
N. Moiseyev, Crossing rule for a PT-symmetric two-level time-periodic system, Phys. Rev. A 83(5), 052125 (2011)
CrossRef ADS Google scholar
[26]
X. Luo, J. Huang, H. Zhong, X. Qin, Q. Xie, Y. S. Kivshar, and C. Lee, Pseudo-parity-time symmetry in optical systems, Phys. Rev. Lett. 110(24), 243902 (2013)
CrossRef ADS Google scholar
[27]
X. Lian, H. Zhong, Q. Xie, X. Zhou, Y. Wu, and W. Liao, PT-symmetry-breaking induced suppression of tunneling in a driven non-Hermitian two-level system, Eur. Phys. J. D 68(7), 189 (2014)
CrossRef ADS Google scholar
[28]
10.1103/PhysRevA.90.040101 Y. N. Joglekar, R. Marathe, P. Durganandini, and R. K. Pathak, PT spectroscopy of the Rabi problem, Phys. Rev. A 90(4), 040101(R) (2014)
[29]
J. Gong and Q. H. Wang, Stabilizing non-Hermitian systems by periodic driving, Phys. Rev. A 91(4), 042135 (2015)
CrossRef ADS Google scholar
[30]
Z. Zhou, B. Zhu, and L. Zhang, Analytical study on propagation dynamics of optical beam in parity-time symmetric optical couplers, Commum. Theor. Phys. 63(4), 406 (2015)
CrossRef ADS Google scholar
[31]
S. Longhi, PT phase control in circular multi-core fibers, Opt. Lett. 41(9), 1897 (2016)
CrossRef ADS Google scholar
[32]
R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, Theory of coupled optical PT symmetric structures, Opt. Lett. 32(17), 2632 (2007)
CrossRef ADS Google scholar
[33]
K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam dynamics in PT symmetric optical lattices, Phys. Rev. Lett. 100(10), 103904 (2008)
CrossRef ADS Google scholar
[34]
Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Optical solitons in PT periodic potentials, Phys. Rev. Lett. 100(3), 030402 (2008)
CrossRef ADS Google scholar
[35]
A. Yariv, Optical Electronics in Modern Communications, Oxford: Oxford University Press, 1997
[36]
P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics, New York: Wiley, 2001
[37]
S. Longhi, Quantum-optical analogies using photonic structures, Laser Photonics Rev. 3(3), 243 (2009)
CrossRef ADS Google scholar
[38]
I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1–2), 1 (2012)
CrossRef ADS Google scholar
[39]
A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, Inhibition of light tunneling in waveguide arrays, Phys. Rev. Lett. 102(15), 153901 (2009)
CrossRef ADS Google scholar
[40]
A. Szameit, Y. V. Kartashov, M. Heinrich, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, Nonlinearity-induced broadening of resonances in dynamically modulated couplers, Opt. Lett. 34(18), 2700 (2009)
CrossRef ADS Google scholar
[41]
G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, and S. Longhi, Visualization of coherent destruction of tunneling in an optical double well system, Phys. Rev. Lett. 98(26), 263601 (2007)
CrossRef ADS Google scholar
[42]
J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, Optical analogues for massless Dirac particles and conical diffraction in one dimension, Phys. Rev. Lett. 109(2), 023602 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(902 KB)

Accesses

Citations

Detail

Sections
Recommended

/