Recent technological progress in Asia from the First Asian Symposium on Laser-induced Breakdown Spectroscopy

Lian-Bo Guo (郭连波), Xiang-You Li (李祥友), Wei Xiong (熊伟), Xiao-Yan Zeng (曾晓雁), Yong-Feng Lu (陆永枫)

PDF(129 KB)
PDF(129 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 115208. DOI: 10.1007/s11467-016-0635-9
EDITORIAL
EDITORIAL

Recent technological progress in Asia from the First Asian Symposium on Laser-induced Breakdown Spectroscopy

Author information +
History +

Cite this article

Download citation ▾
Lian-Bo Guo (郭连波), Xiang-You Li (李祥友), Wei Xiong (熊伟), Xiao-Yan Zeng (曾晓雁), Yong-Feng Lu (陆永枫). Recent technological progress in Asia from the First Asian Symposium on Laser-induced Breakdown Spectroscopy. Front. Phys., 2016, 11(6): 115208 https://doi.org/10.1007/s11467-016-0635-9

References

[1]
F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16(2), 59 (1962)
[2]
C. Aragón, J. A. Aguilera, and J. Campos, Determination of carbon content in molten steel using laser-induced breakdown spectroscopy, Appl. Spectrosc. 47(5), 606 (1993)
CrossRef ADS Google scholar
[3]
A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, and H. J. L. van der Steen, Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique, Appl. Phys. B 63(2), 185 (1996)
CrossRef ADS Google scholar
[4]
J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. At. Spectrom. 19(9), 1061 (2004)
CrossRef ADS Google scholar
[5]
J. Yu and R. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 647 (2012)
CrossRef ADS Google scholar
[6]
Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)
CrossRef ADS Google scholar
[7]
H. K. Sanghapi, K. K. Ayyalasomayajula, F. Y. Yueh, J. P. Singh, D. L. McIntyre, J. C. Jain, and J. Nakano, Analysis of slags using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 115, 40 (2016)
CrossRef ADS Google scholar
[8]
Z. Z. Wang, J. J. Yan, J. P. Liu, Y. Deguchi, S. Katsumori, and A. Ikutomo, Sensitive cesium measurement in liquid sample using low-pressure laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 114, 74 (2015)
CrossRef ADS Google scholar
[9]
M. Martin, R. C. Martin, S. Allman, D. Brice, A. Wymore, and N. Andre, Quantification of rare earth elements using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 114, 65 (2015)
CrossRef ADS Google scholar
[10]
T. Sakka, A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, and B. Thornton, Effects of pulse width on nascent laser-induced bubbles for underwater laserinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 97, 94 (2014)
CrossRef ADS Google scholar
[11]
B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)
CrossRef ADS Google scholar
[12]
A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, and T. Sakka, Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations, J. Appl. Phys. 117(17), 173304 (2015)
CrossRef ADS Google scholar
[13]
Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. E. Zheng, Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection, Appl. Phys. Lett. 107(111107), 1 (2016)
[14]
Y. Lu, Y. D. Li, Y. Li, Y. F. Wang, S. Wang, Z. M. Bao, and R. E. Zheng, Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy, Spectrochim. Acta B At. Spectrosc. 110, 63 (2015)
CrossRef ADS Google scholar
[15]
X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, and Y. F. Lu, Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 3, 24 (2016)
CrossRef ADS Google scholar
[16]
M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling, J. Anal. At. Spectrom. 29(5), 886 (2014)
CrossRef ADS Google scholar
[17]
M. Saeki, A. Iwanade, C. Ito, I. Wakaida, B. Thornton, T. Sakka, and H. Ohba, Development of a fibercoupled laser-induced breakdown spectroscopy instrument for analysis of underwater debris in a nuclear reactor core, J. Nucl. Sci. Technol. 51(7–8), 930 (2014)
CrossRef ADS Google scholar
[18]
D. Zhao, N. Farid, R. Hai, D. Wu, and H. Ding, Diagnostics of first wall materials in a magnetically confined fusion device by polarization-resolved laser-induced breakdown spectroscopy, Plasma Sci. Technol. 16(2), 149 (2014)
CrossRef ADS Google scholar
[19]
C. Li, X. Wu, C. Zhang, H. Ding, J. Hu, and G. N. Luo, H.B.ding, In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy, J. Nucl. Mater. 452(1–3), 10 (2014)
CrossRef ADS Google scholar
[20]
R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental advanced superconducting tokamak, Spectrochim. Acta B At. Spectrosc. 87, 147 (2013)
CrossRef ADS Google scholar
[21]
K. Akaoka, Y. Maruyama, M. Oba, M. Miyabe, I. Wakaida, Development of laser remote analysis for nuclear fuel materials 2:(2) Evaluation of Measurement Accuracy using Laser Induced Breakdown Spectroscopy for High Concentration Elements, Proceedings of AESJ2013 (2013)
[22]
J. Gruber, J. Heitz, H. Strasser, D. Bauerle, and N. Ramaseder, Rapid in-situ analysis of liquid steel by laserinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 56(6), 685 (2001)
CrossRef ADS Google scholar
[23]
L. X. Sun, Y. Xin, Z. B. Cong, Y. Li, and L. F. Qi, Online compositional analysis of molten steel by laserinduced breakdown spectroscopy, Adv. Mat. Res. 694–697, 1260 (2013)
[24]
H. Y. Kong, L. X. Sun, J. T. Hu, Y. Xin, and Z. B. Cong, Selection of spectral data for classification of steels using laser-induced breakdown spectroscopy, Plasma Sci. Technol. 17(11), 964 (2015)
CrossRef ADS Google scholar
[25]
Z. Q. Hao, C. M. Li, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression, Opt. Express 23(6), 7795 (2015)
CrossRef ADS Google scholar
[26]
K. Q. Yu, Y. R. Zhao, F. Liu, and Y. He, Laser- Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil, Sci. Rep. 6, 27574 (2016)
CrossRef ADS Google scholar
[27]
R. X. Yi, L. B. Guo, X. H. Zou, J. M. Li, Z. Q. Hao, X. Y. Yang, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Background removal in soil analysis using laser-induced breakdown spectroscopy combined with standard addition method, Opt. Express 24(3), 2607 (2016)
CrossRef ADS Google scholar
[28]
Y. Z. Lin, M. Y. Yao, M. H. Liu, Q. M. Peng, X. Zhang, T. B. Chen, and Y. Xu, Determination of parameter range in detecting Cu of Gannan navel orange by LIBS setup, Spectroscopy and Spectral Analysis. 32(11), 2925 (2012)
[29]
P. C. Zheng, M. J. Shi, J. M. Wang, and H. D. Liu, The spectral emission characteristics of laser induced plasma on tea samples, Plasma Sci. Technol. 17(8), 664 (2015)
CrossRef ADS Google scholar
[30]
X. W. Li, X. L. Mao, Z. Wang, and R. E. Russo, Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy Using UV laser radiation, Plasma Sci. Technol. 17(11), 928 (2015)
CrossRef ADS Google scholar
[31]
S. C. Yao, J. L. Xu, K. J. Bai, and J. D. Lu, Improved Measurement Performance of Inorganic Elements in Coal by Laser-Induced Breakdown Spectroscopy Coupled with Internal Standardization, Plasma Sci. Technol. 17(11), 938 (2015)
CrossRef ADS Google scholar
[32]
Z. Wang, Y. Deguchi, H. Watanabe, R. Kurose, J. Yan, and J. Liu, Improvement on quantitative measurement of fly ash contents using laser-induced breakdown spectroscopy, Journal of Flow Control Measurement & Visualization 03(01), 10 (2015)
CrossRef ADS Google scholar
[33]
Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Applications of laser diagnostics to thermal power plants and engines, Appl. Therm. Eng. 73(2), 1453 (2014)
CrossRef ADS Google scholar
[34]
Z. Z. Wang, Y. Deguchi, J. J. Yan, J. P. Liu, Rapid detection of mercury and iodine using laser breakdown time-of-flight mass spectrometry, Spectrosc. Lett. 48(2), 128 (2015)
CrossRef ADS Google scholar
[35]
X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, Accuracy improvement of quantitative analysis in laser induced breakdown spectroscopy using modified wavelet transform, Opt. Express 22(9), 10233 (2014)
CrossRef ADS Google scholar
[36]
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, Wavelength dependence in the analysis of carbon content in coal by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy, Plasma Sci. Technol. 17(8), 621 (2015)
CrossRef ADS Google scholar
[37]
X. W. Li, W. Zhe, Z. Li, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta. B 99, 82 (2014)
CrossRef ADS Google scholar
[38]
R. Wang, X. H. Ma, Q. Yu, Y. Song, H. F. Zhao, M. Zhang, and Y. B. Liao, Methods of Data Processing for Trace Elements Analysis Using Laser Induced Breakdown Spectroscopy, Plasma Sci. Technol. 17(11), 944 (2015)
CrossRef ADS Google scholar
[39]
A. Sarkar, V. Karki, S. K. Aggarwal, G. S. Maurya, R. Kumar, A. K. Rai, X. L. Mao, and R. E. Russo, Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy, Spectrochim. Acta. B 108, 8 (2015)
CrossRef ADS Google scholar
[40]
J. H. Yang, C. C. Yi, J. W. Xu, and X. H. Ma, Laserinduced breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B At. Spectrosc. 107, 45 (2015)
CrossRef ADS Google scholar
[41]
B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)
CrossRef ADS Google scholar
[42]
Z. Wang, F. Z. Dong, and W. D. Zhou, A rising force for the world-wide development of laser-induced breakdown spectroscopy, Plasma Sci. Technol. 17(8), 617 (2015)
CrossRef ADS Google scholar
[43]
Z. Z. Wang, Y. Deguchi, Z. Z. Zhang, Z. Wang, X. Y. Zeng, and J. J. Yan, Laser-induced breakdown spectroscopy in Asia, Front. Phys. 11(6), 114213 (2016)
CrossRef ADS Google scholar
[44]
Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China, Front. Phys. 11(6), 114211 (2016)
CrossRef ADS Google scholar
[45]
C. Li, C. L. Feng, H. Y. Oderji, G. N. Luo, and H. B. Ding, Review of LIBS application in nuclear fusion technology, Front. Phys. 11(6), 114214 (2016)
CrossRef ADS Google scholar
[46]
Y. Xin, L. X. Sun, Z. J. Yang, P. Zeng, Z. B. Cong, and L. F. Qi, In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system, Front. Phys. 11(5), 115207 (2016)
CrossRef ADS Google scholar
[47]
Y. M. Guo, L. B. Guo, J. M. Li, H. D. Liu, Z. H. Zhu, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data, Front. Phys. 11(5), 114212 (2016)
CrossRef ADS Google scholar
[48]
S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, and R. E. Zheng, Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy, Front. Phys. 11(4), 114202 (2016)
CrossRef ADS Google scholar
[49]
V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field, Appl. Opt. 42(12), 2085 (2003)
CrossRef ADS Google scholar
[50]
Z. Q. Hao, L. B. Guo, C. M. Li, M. Shen, X. H. Zou, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement, J. Anal. At. Spectrom. 29(12), 2309 (2014)
CrossRef ADS Google scholar
[51]
L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas bycombined spatial and magnetic confinement, Opt. Express 19(15), 14067 (2011)
CrossRef ADS Google scholar
[52]
X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, Spectroscopic study of laser-induced Al plasmas with cylindrical confinement, J. Appl. Phys. 102(9), 093301 (2007)
CrossRef ADS Google scholar
[53]
D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy, Anal. Chem. 83(24), 9456 (2011)
CrossRef ADS Google scholar
[54]
X. W. Li, Z. Wang, X. L. Mao, and R. Russo, Spatially and temporally resolved spectral emission of laserinduced plasmas confined by cylindrical cavities, J. Anal. At. Spectrom. 29(11), 2127 (2014)
CrossRef ADS Google scholar
[55]
Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy, Opt. Express 22(11), 12909 (2014)
CrossRef ADS Google scholar
[56]
W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)
CrossRef ADS Google scholar
[57]
W. D. Zhou, K. X. Li, H. G. Qian, Z. J. Ren, and Y. L. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt. 51(7), B42 (2012)
CrossRef ADS Google scholar
[58]
R. Ahmed, and M. A. Baig, A comparative study of single and double pulse laser induced breakdown spectroscopy, J. Appl. Phys. 106(3), 033307 (2009)
CrossRef ADS Google scholar
[59]
Z. Sukra Lie, M. On Tjia, R. Hedwig, M. Margaretha Suliyanti, S. Nur Abdulmadjid, N. Idris, A. Mangasi Marpaung, M. Pardede, E. Jobiliong, M. Ramli, H. Suyanto, K. Fukumoto, K. Kagawa, and K. Hendrik Kurniawan, Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma, J. Appl. Phys. 113(5), 053301 (2013)
CrossRef ADS Google scholar
[60]
R. Hai, X. Wu, Y. Xin, P. Liu, D. Wu, H. Ding, Y. Zhou, L. Cai, and L. Yan, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater. 447(1–3), 9 (2013)
[61]
J. M. Li, L. B. Guo, N. Zhao, X. Y. Yang, R. X. Yi, K. H. Li, Q. D. Zeng, X. Y. Li, X. Y. Zeng, and Y. Lu, Determination of cobalt in low-alloy steels using laserinduced breakdown spectroscopy combined with laserinduced fluorescence, Talanta 151, 234 (2016)
CrossRef ADS Google scholar
[62]
Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser, J. Anal. At. Spectrom. 31(3), 767 (2016)
CrossRef ADS Google scholar
[63]
Q. Y. Lin, Z. M. Wei, M. Q. Xu, S. Wang, G. H. Niu, K. P. Liu, Y. X. Duan, and J. Yang, Laser-induced breakdown spectroscopy for solution sample analysis using porous electrospun ultrafine fibers as a solid-phase support, RSC Advances 4(28), 14392 (2014)
CrossRef ADS Google scholar
[64]
L. X. Sun, Y. Xin, Z. B. Cong, Y. Li, and L. F. Qi, Online compositional analysis of molten steel by laserinduced breakdown spectroscopy, Adv. Mat. Res.694–697, 1260 (2013)
[65]
B. Zhang, L. X. Sun, and H. B. Yu, An Improving Method for Background Correction in Laser Induced Breakdown Spectroscopy, Appl. Mech. Mater. 751, 86 (2015)
[66]
K. H. Li, L. B.Guo, C. M. Li, X. Y. Li, M. Shen, Z. Zheng, Y. Yu, R. F. Hao, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, and X. Y. Zeng, Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network, J. Anal. At. Spectrom. 30(7), 1623 (2015)
CrossRef ADS Google scholar
[67]
T. Fei, Q. P. Wang, X. Y. Lu, S. B. Wang, and C. Y. Pan, Experimental analysis of carbon content in carbon steel by laser-induced plasma spectroscopy method, Chinese Journal of Quantum Electronics 29(2), 209 (2012)
[68]
M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)
CrossRef ADS Google scholar
[69]
S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)
CrossRef ADS Google scholar
[70]
S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom. 25(11), 1733 (2010)
CrossRef ADS Google scholar
[71]
S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases, Appl. Surf. Sci. 257(7), 3103 (2011)
CrossRef ADS Google scholar
[72]
T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt. 51(7), B22 (2012)
CrossRef ADS Google scholar
[73]
Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)
CrossRef ADS Google scholar
[74]
Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express 21(13), 15974 (2013)
CrossRef ADS Google scholar
[75]
T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
CrossRef ADS Google scholar
[76]
Z. Z. Wang, Y. Deguchi, M. Kuwahara, J. J. Yan, and J. P. Liu, Enhancement of laser-induced breakdown spectroscopy (LIBS) detection limit using a low-pressure and short-pulse laser-induced plasma process, Appl. Spectrosc. 67(11), 1242 (2013)
CrossRef ADS Google scholar
[77]
A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm, Anal. Bioanal. Chem. 400(10), 3279 (2011)
CrossRef ADS Google scholar
[78]
K.Q. Yu, Y. R. Zhao, F. Liu, and Y. He, Laserinduced breakdown spectroscopy coupled with multivariate chemometrics for variety discrimination of soil, Sci. Rep. 6, 27574 (2016)
CrossRef ADS Google scholar
[79]
X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys. 7(6), 721 (2012)
CrossRef ADS Google scholar
[80]
R. X. Yi, L. B. Guo, X. H. Zou, J. M. Li, Z. Q. Hao, X. Y. Yang, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Background removal in soil analysis using laser- induced breakdown spectroscopy combined with standard addition method, Opt. Express 24(3), 2607 (2016)
CrossRef ADS Google scholar
[81]
K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom. 25(9), 1475 (2010)
CrossRef ADS Google scholar
[82]
T. B. Chen, M. Y. Yao, M. H. Liu, Z. J. Lei, Q. M. Peng, Y. Xu, and X. Zhang, Quantitative analysis of Ba and Sr in soil using laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis 32(6), 1658 (2012)
[83]
P. Y. Meslin, O. Gasnault, O. Forni, S. Schröder, A. Cousin, , Soil diversity and hydration as observed by ChemCam at Gale crater, Mars, Science 341(6153), 1238670 (2013)
CrossRef ADS Google scholar
[84]
N. Idris, M. Ramli, R. Hedwig, Z.S. Lie, K.H. Kurniawan, Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS), 1719(030051), 1–4 (2016)
[85]
S. Pandhija and A. K. Rai, Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS, Environ. Monit. Assess. 148(1-4), 437 (2009)
CrossRef ADS Google scholar
[86]
Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. E. Zheng, Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection, Appl. Phys. Lett. 107(111107), 1 (2016)
[87]
Y. Lu, Y. D. Li, Y. Li, Y. F. Wang, S. Wang, Z. M. Bao, and R. E. Zheng, Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy, Spectrochim. Acta B At. Spectrosc. 110, 63 (2015)
CrossRef ADS Google scholar
[88]
M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction, Spectrochim. Acta B At. Spectrosc.79–80, 88 (2013)
CrossRef ADS Google scholar
[89]
L. Shi, Q. Y. Lin, and Y. X. Duan, A novel specimenpreparing method using epoxy resin as binding material for LIBS analysis of powder samples, Talanta 144, 1370 (2015)
CrossRef ADS Google scholar
[90]
Q. Y. Lin, X. D. Han, J. Wang, Z. Wei, K. Liu, and Y. Duan, Ultra-trace metallic element detection in liquid samples using laser induced breakdown spectroscopy based on matrix conversion and crosslinked PVA polymer membrane, J. Anal. At. Spectrom. 31(8), 1622 (2016)
CrossRef ADS Google scholar
[91]
S. L. Zhong, Y. Lu, W. J. Kong, K. Cheng, R. Zheng, Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy, Front. Phys. 11(4), 114202 (2016)
CrossRef ADS Google scholar
[92]
L. Zheng, S. Niu, A. Q. Khan, S. Yuan, J. Yu, and H. Zeng, Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target, Spectrochim. Acta B At. Spectrosc. 118, 66 (2016)
CrossRef ADS Google scholar
[93]
S. Kashiwakura and K. Wagatsuma, Rapid sorting of stainless steels by open-air laser-induced breakdown spectroscopy with detecting chromium, nickel, and molybdenum, ISIJ Int. 55(11), 2391 (2015)
CrossRef ADS Google scholar
[94]
S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)
CrossRef ADS Google scholar
[95]
T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser induced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
CrossRef ADS Google scholar
[96]
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
CrossRef ADS Google scholar
[97]
X. Li, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laserinduced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc. 88, 180 (2013)
CrossRef ADS Google scholar
[98]
B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)
CrossRef ADS Google scholar
[99]
Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc. 68, 58 (2012)
CrossRef ADS Google scholar
[100]
L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 64(3), 278 (2009)
CrossRef ADS Google scholar
[101]
B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 67(9), 1087 (2013)
CrossRef ADS Google scholar
[102]
L. X. Sun and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta 79(2), 388 (2009)
CrossRef ADS Google scholar
[103]
J. H. In, C. K. Kim, S. H. Lee, H. J. Lee, and S. Jeong, Improvement of selenium analysis during laser-induced breakdown spectroscopy measurement of CuIn1−xGaxSe2 solar cell films by self-absorption corrected normalization, J. Anal. At. Spectrom. 28(8), 1327 (2013)
CrossRef ADS Google scholar
[104]
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
CrossRef ADS Google scholar
[105]
Y. Yu, Z. Q. Hao, C. M. Li, L. B. Guo, K. H. Li, Q. D. Zeng, X. Y. Li, Z. Ren, and X. Y. Zeng, Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm, Acta Phys. Sinica 62(21), 215201 (2013)
[106]
T. L. Zhang, L. Liang, K. Wang, H. S. Tang, X. F. Yang, Y. X. Duan, and H. Li, A novel approach for the quantitative analysis of multiple elements in steel basedon laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR), J. Anal. At. Spectrom. 29(12), 2323 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(129 KB)

Accesses

Citations

Detail

Sections
Recommended

/