Evaporation of a nanodroplet on a rough substrate

Yong-Juan Sun (孙永娟), Tao Huang (黄韬), Jun-Feng Zhao (赵俊锋), Yong Chen (陈勇)

PDF(2911 KB)
PDF(2911 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 126401. DOI: 10.1007/s11467-016-0631-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Evaporation of a nanodroplet on a rough substrate

Author information +
History +

Abstract

The wettability and roughness of a substrate are crucial to the evolution of the contact angle and three-phase contact line in the evaporation of sessile droplets. In this paper, by performing molecular dynamics simulations for droplet evaporation at the nanoscale, we show that the wettability is more important than the roughness. For a smooth substrate, the evaporation behavior of a nanodroplet is similar to that at the macroscopic scale. This similarity is also observed in the case of a rough hydrophilic substrate. However, for a rough hydrophobic substrate, both the constant contact angle and contact line pinning appear in turn during evaporation. This suggests that the roughness of the hydrophobic substrate is useful for the evaporation technique in self-assembly at the nanoscale.

Keywords

evaporation / nanodroplet / roughness / wettability

Cite this article

Download citation ▾
Yong-Juan Sun (孙永娟), Tao Huang (黄韬), Jun-Feng Zhao (赵俊锋), Yong Chen (陈勇). Evaporation of a nanodroplet on a rough substrate. Front. Phys., 2017, 12(5): 126401 https://doi.org/10.1007/s11467-016-0631-0

References

[1]
D. S. Golovko, H. J. Butt, and E. Bonaccurso, Transition in the evaporation kinetics of water microdrops on hydrophilic surfaces, Langmuir 25(1), 75 (2009)
CrossRef ADS Google scholar
[2]
D. H. Shina, S. H. Lee, J. Y. Jung, and J. Y. Yoo, Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces, Microelectron. Eng. 86(4–6), 1350 (2009)
CrossRef ADS Google scholar
[3]
T. A. H. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. B. Huang, and V. Rudolph, Theoretical and experimental analysis of droplet evaporation on solid surfaces, Chem. Eng. Sci. 69(1), 522 (2012)
CrossRef ADS Google scholar
[4]
J. Zhang, F. Leroy, and F. Müller-Plathe, Influence of contact-line curvature on the evaporation of nanodroplets from solid substrates, Phys. Rev. Lett. 113(4), 046101 (2014)
CrossRef ADS Google scholar
[5]
F. C. Wang and Y. P. Zhao, Contact angle hysteresis at the nanoscale: A molecular dynamics simulation study, Colloid Polym. Sci. 291(2), 307 (2013)
CrossRef ADS Google scholar
[6]
T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. B 95(0), 65 (1805)
CrossRef ADS Google scholar
[7]
P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys. 57(3), 827 (1985)
CrossRef ADS Google scholar
[8]
C. W. Extrand and Y. Kumagai, An experimental study of contact angle hysteresis, J. Colloid Interface Sci. 191(2), 378 (1997)
CrossRef ADS Google scholar
[9]
C. W. Extrand, A thermodynamic model for contact angle hysteresis, J. Colloid Interface Sci. 207(1), 11 (1998)
CrossRef ADS Google scholar
[10]
P. G. Pittoni, C. C. Chang, T. S. Yu, and S. Y. Lin, Evaporation of water drops on polymer surfaces: Pinning, depinning and dynamics of the triple line, Colloids Surf. A 432, 89 (2013)
CrossRef ADS Google scholar
[11]
L. Grandas, C. Reynard, R. Santini, and L. Tadrist, Experimental study of the evaporation of a sessile drop on a heat wall: Wetting influence, Int. J. Therm. Sci. 44(2), 137 (2005)
CrossRef ADS Google scholar
[12]
H. Huand and R. G. Larson, Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B 106(6), 1334 (2002)
CrossRef ADS Google scholar
[13]
X. Shen, C. M. Ho, and T. S. Wong, Minimal size of coffee ring structure, J. Phys. Chem. B 114(16), 5269 (2010)
CrossRef ADS Google scholar
[14]
B. J. Fischer, Particle convection in an evaporating colloidal droplet, Langmuir 18(1), 60 (2002)
CrossRef ADS Google scholar
[15]
H. M. Gorr, J. M. Zueger, and J. A. Barnard, Lysozyme pattern formation in evaporating drops, Langmuir 28(9), 4039 (2012)
CrossRef ADS Google scholar
[16]
D. Orejon, K. Sefiane, and M. E. R. Shanahan, Stickslip of evaporating droplets: Substrate hydrophobicity and nanoparticle concentration, Langmuir 27(21), 12834 (2011)
CrossRef ADS Google scholar
[17]
S. Maheshwari, L. Zhang, Y. Zhu, and H. C. Chang, Coupling between precipitation and contact-line dynamics: Multiring stains and stick-slip motion, Phys. Rev. Lett. 100(4), 044503 (2008)
CrossRef ADS Google scholar
[18]
T. Furuta, A. Nakajima, M. Sakai, T. Isobe, Y. Kameshima, and K. Okada, Evaporation and sliding of water droplets on fluoroalkylsilane coatings with nanoscale roughness, Langmuir 25(10), 5417 (2009)
CrossRef ADS Google scholar
[19]
J. H. Kim, S. I. Ahn, J. H. Kim, and W. C. Zin, Evaporation of water droplets on polymer surfaces, Langmuir 23(11), 6163 (2007)
CrossRef ADS Google scholar
[20]
G. McHale, S. M. Rowan, M. I. Newton, and M. K. Banerjee, Evaporation and the wetting of a low-energy solid surface, J. Phys. Chem. B 102(11), 1964 (1998)
CrossRef ADS Google scholar
[21]
G. Li, S. M. Flores, C. Vavilala, M. Schmittel, and K. Graf, Evaporation dynamics of microdroplets on selfassembled monolayers of dialkyl disulfides, Langmuir 25(23), 13438 (2009)
CrossRef ADS Google scholar
[22]
K. R. Khedir, G. K. Kannarpady, H. Ishihara, J. Woo, S. Trigwell, C. Ryerson, and A. S. Biris, Advanced studies of water evaporation kinetics over teflon-coated tungsten nanorod surfaces with variable hydrophobicity and morphology, J. Phys. Chem. C 115(28), 13804 (2011)
CrossRef ADS Google scholar
[23]
K. S. Birdi and D. T. Vu, Wettability and the evaporation rates of fluids from solid surfaces, J. Adhes. Sci. Technol. 7(6), 485 (1993)
CrossRef ADS Google scholar
[24]
Y. Liu and X. Zhang, Evaporation dynamics of nanodroplets and their anomalous stability on rough substrates, Phys. Rev. E 88(1), 012404 (2013)
CrossRef ADS Google scholar
[25]
T. Furuta, M. Sakai, T. Isobe, and A. Nakajima, Evaporation behavior of microliter- and sub-nanoliter-scale water droplets on two different fluoroalkylsilane coatings, Langmuir 25(20), 11998 (2009)
CrossRef ADS Google scholar
[26]
R. V. Sedev, J. G. Petrov, and A. W. Neumann, Effect of swelling of a polymer surface on advancing and receding contact angles, J. Colloid Interface Sci. 180(1), 36 (1996)
CrossRef ADS Google scholar
[27]
R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28(8), 988 (1936)
CrossRef ADS Google scholar
[28]
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81(8), 3684 (1984)
CrossRef ADS Google scholar
[29]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
CrossRef ADS Google scholar
[30]
J. Zhang, F. Leroy, and F. Müller-Plathe, Evaporation of nanodroplets on heated substrates: A molecular dynamics simulation study, Langmuir 29(31), 9770 (2013)
CrossRef ADS Google scholar
[31]
A. Checco, P. Guenoun, and J. Daillant, Nonlinear dependence of the contact angle of nanodroplets on contact line curvature, Phys. Rev. Lett. 91(18), 186101 (2003)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2911 KB)

Accesses

Citations

Detail

Sections
Recommended

/