Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2

Xing-Chen Pan, Yiming Pan, Juan Jiang, Huakun Zuo, Huimei Liu, Xuliang Chen, Zhongxia Wei, Shuai Zhang, Zhihe Wang, Xiangang Wan, Zhaorong Yang, Donglai Feng, Zhengcai Xia, Liang Li, Fengqi Song, Baigeng Wang, Yuheng Zhang, Guanghou Wang

PDF(3544 KB)
PDF(3544 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127203. DOI: 10.1007/s11467-016-0629-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2

Author information +
History +

Abstract

Unsaturated magnetoresistance (MR) has been reported in type-II Weyl semimetal WTe2, manifested as a perfect compensation of opposite carriers. We report linear MR (LMR) in WTe2 crystals, the onset of which was identified by constructing the MR mobility spectra for weak fields. The LMR further increased and became dominant for fields stronger than 20 T, while the parabolic MR gradually decayed. The LMR was also observed in high-pressure conditions.

Keywords

WTe2 / type-II Weyl semimetal / carrier balance / linear magnetoresistance

Cite this article

Download citation ▾
Xing-Chen Pan, Yiming Pan, Juan Jiang, Huakun Zuo, Huimei Liu, Xuliang Chen, Zhongxia Wei, Shuai Zhang, Zhihe Wang, Xiangang Wan, Zhaorong Yang, Donglai Feng, Zhengcai Xia, Liang Li, Fengqi Song, Baigeng Wang, Yuheng Zhang, Guanghou Wang. Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2. Front. Phys., 2017, 12(3): 127203 https://doi.org/10.1007/s11467-016-0629-7

References

[1]
A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature 527(7579), 495 (2015)
CrossRef ADS Google scholar
[2]
S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)
CrossRef ADS Google scholar
[3]
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
CrossRef ADS Google scholar
[4]
I. Belopolski, S.-Y. Xu, Y. Ishida, X.C. Pan, P. Yu, D. S. Sanchez, M. Neupane, N. Alidoust, G. Chang, T.-R. Chang, Y. Wu, G. Bian, H. Zheng, S.-M. Huang, C.- C. Lee, D. Mou, L. Huang, Y. Song, B. G. Wang, G. H. Wang, Y.-W. Yeh, N. Yao, J. Rault, P. Lefevre, F. Bertran, H.-T. Jeng, T. Kondo, A. Kaminski, H. Lin, Z. Liu, F. Q. Song, S. Shin, and M. Z. Hasan, Unoccupied electronic structure and signatures of topological Fermi arcs in the Weyl semimetal candidate MoxW1−xTe2, arXiv: 1512.09099 (2015)
[5]
I. Belopolski, S.Y. Xu, Y. Ishida, X. Pan, P. Yu, D. S. Sanchez, H. Zheng, M. Neupane, N. Alidoust, G. Chang, T.R. Chang, Y. Wu, G. Bian, S.M. Huang, C.C. Lee, D. Mou, L. Huang, Y. Song, B. Wang, G. Wang, Y.W. Yeh, N. Yao, J. E. Rault, P. Le Fèvre, F. Bertran, H.T. Jeng, T. Kondo, A. Kaminski, H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1−xTe2, Phys. Rev. B 94(8), 085127 (2016)
CrossRef ADS Google scholar
[6]
X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef ADS Google scholar
[7]
M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Large, nonsaturating magnetoresistance in WTe2, Nature 514, 205 (2014)
[8]
I. Pletikosi? M. N. Ali, A. Fedorov, R. Cava, and T. Valla, Electronic structure basis for the extraordinary magnetoresistance in WTe2, Phys. Rev. Lett. 113(21), 216601 (2014)
CrossRef ADS Google scholar
[9]
P. Cai, J. Hu, L. P. He, J. Pan, X. C. Hong, Z. Zhang, J. Zhang, J. Wei, Z. Q. Mao, and S. Y. Li, Drastic pressure effect on the extremely large magnetoresistance in WTe2: Quantum oscillation study, Phys. Rev. Lett. 115(5), 057202 (2015)
CrossRef ADS Google scholar
[10]
X. C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, and Y. Zhang, Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride, Nat. Commun. 6, 7805 (2015)
CrossRef ADS Google scholar
[11]
D. Kang, Y. Zhou, W. Yi, C. Yang, J. Guo, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, A. Li, K. Yang, Q. Wu, G. Zhang, L. Sun, and Z. Zhao, Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride, Nat. Commun. 6, 7804 (2015)
CrossRef ADS Google scholar
[12]
J. Ye, Y. Zhang, R. Akashi, M. Bahramy, R. Arita, and Y. Iwasa, Superconducting dome in a gate-tuned band insulator, Science 338(6111), 1193 (2012)
CrossRef ADS Google scholar
[13]
J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2, Phys. Rev. Lett. 115(16), 166601 (2015)
CrossRef ADS Google scholar
[14]
J. Antoszewski and L. Faraone, Quantitative mobility spectrum analysis (QMSA) in multi-layer semiconductor structures, Opto-Electron. Rev. 12, 347 (2004)
[15]
J. Antoszewski, G. Umana-Membreno, and L. Faraone, High-resolution mobility spectrum analysis of multicarrier transport in advanced infrared materials, J. Electron. Mater. 41(10), 2816 (2012)
CrossRef ADS Google scholar
[16]
J. McClure, Analysis of multicarrier galvanomagnetic data for graphite, Phys. Rev. 112(3), 715 (1958)
CrossRef ADS Google scholar
[17]
K. Huynh, Y. Tanabe, T. Urata, S. Heguri, K. Tanigaki, T. Kida, and M. Hagiwara, Mobility spectrum analytical approach for intrinsic band picture of Ba(FeAs)2, New J. Phys. 16(9), 093062 (2014)
CrossRef ADS Google scholar
[18]
K. Huynh, Y. Tanabe, T. Urata, H. Oguro, S. Heguri, K. Watanabe, and K. Tanigaki, Electric transport of a single-crystal iron chalcogenide FeSe superconductor: Evidence of symmetry-breakdown nematicity and additional ultrafast Dirac cone-like carriers, Phys. Rev. B 90(14), 144516 (2014)
CrossRef ADS Google scholar
[19]
Z. Zhu, X. Lin, J. Liu, B. Fauque, Q. Tao, C. Yang, Y. Shi, and K. Behnia, Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2, Phys. Rev. Lett. 114(17), 176601 (2015)
CrossRef ADS Google scholar
[20]
At higher temperature, the mobility is strongly suppressed by electron-phonon interaction. The parameters obtained from the mobility spectra at higher temperatures are not exact.
[21]
H. Lv, W. Lu, D. Shao, Y. Liu, S. Tan, and Y. Sun, Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer, Europhys. Lett. 110(3), 37004 (2015)
CrossRef ADS Google scholar
[22]
T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2014)
CrossRef ADS Google scholar
[23]
A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)
CrossRef ADS Google scholar
[24]
M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Large linear magnetoresistance in the Dirac semimetal TlBiSSe, Phys. Rev. B 91(4), 041203 (2015)
CrossRef ADS Google scholar
[25]
J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R. Cava, and N. Ong, Anomalous conductivity tensor in the Dirac semimetal Na3Bi, EPL 114(2), 27002 (2016)
CrossRef ADS Google scholar
[26]
C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, and S. Jia, Tantalum monoarsenide: An exotic compensated semimetal, arXiv: 1502.00251 (2015)
[27]
C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys. 11(8), 645 (2015)
CrossRef ADS Google scholar
[28]
K. K. Huynh, Y. Tanabe, and K. Tanigaki, Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance, Phys. Rev. Lett. 106(21), 217004 (2011)
CrossRef ADS Google scholar
[29]
D. X. Qu, Y. Hor, J. Xiong, R. Cava, and N. Ong, Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3, Science 329(5993), 821 (2010)
CrossRef ADS Google scholar
[30]
R. Xu, A. Husmann, T. Rosenbaum, M. L. Saboungi, J. Enderby, and P. Littlewood, Large magnetoresistance in non-magnetic silver chalcogenides, Nature 390, 57 (1997)
CrossRef ADS Google scholar
[31]
J. C. W. Song, G. Refael, and P. A. Lee, Linear magnetoresistance in metals: Guiding center diffusion in a smooth random potential, Phys. Rev. B 92(18), 180204 (2015)
CrossRef ADS Google scholar
[32]
Y. Zhao, H. Liu, J. Yan, W. An, J. Liu, X. Zhang, H. Wang, Y. Liu, H. Jiang, Q. Li, Y. Wang, X.Z. Li, D. Mandrus, X. C. Xie, M. Pan, and J. Wang, Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals, Phys. Rev. B 92(4), 041104(R) (2015)

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3544 KB)

Accesses

Citations

Detail

Sections
Recommended

/