Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals

Xiang-Zhuo Xing, Wei Zhou, Chun-Qiang Xu, Nan Zhou, Fei-Fei Yuan, Yu-Feng Zhang, Xiao-Feng Xu, Zhi-Xiang Shi

PDF(2731 KB)
PDF(2731 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127401. DOI: 10.1007/s11467-016-0621-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals

Author information +
History +

Abstract

The effects of isovalent Sb substitution on the superconducting properties of the Ca0.88La0.12Fe2(As1−ySby)2 system have been studied through electrical resistivity measurements. It is seen that the antiferromagnetic or structural transition is suppressed with Sb content, and a high-Tc superconducting phase, accompanied by a low-Tc phase, emerges at 0.02≤y≤0.06. In this intermediate-doping regime, normal-state transport shows non-Fermi-liquid-like behaviors with nearly T-linear resistivity above the high-Tc phase. With further Sb doping, this high-Tc phase abruptly vanishes for y>0.06 and the conventional Fermi liquid is restored, while the low-Tc phase remains robust against Sb impurities. The coincidence of the high-Tc phase and non-Fermi liquid transport behaviors in the intermediate Sb-doping regime suggests that AFM fluctuations play an important role in the observed non-Fermi liquid behaviors, which may be intimately related to the unusual nonbulk high-Tc phase in this system.

Keywords

Sb doped Ca0.88La0.12Fe2As2 superconductors / electrical resistivity measurement / phase diagram

Cite this article

Download citation ▾
Xiang-Zhuo Xing, Wei Zhou, Chun-Qiang Xu, Nan Zhou, Fei-Fei Yuan, Yu-Feng Zhang, Xiao-Feng Xu, Zhi-Xiang Shi. Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals. Front. Phys., 2017, 12(4): 127401 https://doi.org/10.1007/s11467-016-0621-2

References

[1]
H. H. Wen and S. L. Li, Materials and novel superconductivity in iron pnictide superconductors, Annu. Rev. Condens. Matter Phys. 2(1), 121 (2011)
CrossRef ADS Google scholar
[2]
M. Rotter, M. Tegel, and D. Johrendt, Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2, Phys. Rev. Lett. 101(10), 107006 (2008)
CrossRef ADS Google scholar
[3]
N. Ni, J. M. Allred, B. C. Chan, and R. J. Cava, High Tcelectron doped Ca10(Pt3As8)(Fe2As2)5 and Ca10(Pt4As8)(Fe2As2)5 superconductors with skutterudite intermediary layers, Proc. Natl. Acad. Sci. USA 108(45), E1019 (2011)
CrossRef ADS Google scholar
[4]
N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, and H. Sawa, Superconductivity in Ca1−xLaxFeAs2: A novel 112-type iron pnictide with arsenic zigzag bonds, J. Phys. Soc. Jpn. 82(12), 123702 (2013)
CrossRef ADS Google scholar
[5]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05−0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef ADS Google scholar
[6]
M. J. Eom, S. W. Na, C. Hoch, R. K. Kremer, and J. S. Kim, Evolution of transport properties of BaFe2−xRuxAs2 in a wide range of isovalent Ru substitution, Phys. Rev. B 85(2), 024536 (2012)
CrossRef ADS Google scholar
[7]
S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductors, Phys. Rev. B 81(18), 184519 (2010)
CrossRef ADS Google scholar
[8]
S. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai, Z. Xu, and G. Cao, Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1−xPx)2, J. Phys.: Condens. Matter 21(38), 382203 (2009)
CrossRef ADS Google scholar
[9]
S. Kasahara, T. Shibauchi, K. Hashimoto, Y. Nakai, H. Ikeda, T. Terashima, and Y. Matsuda, Abrupt recovery of Fermi-liquid transport following the collapse of the c axis in CaFe2(As1−xPx)2 single crystals, Phys. Rev. B 83(6), 060505(R) (2011)
[10]
C. Wang, S. Jiang, Q. Tao, Z. Ren, Y. Li, L. Li, C. Feng, J. Dai, G. Cao, and Z. A. Xu, Superconductivity in LaFeAs1−xPxO: Effect of chemical pressures and bond covalency, Europhys. Lett. 86(4), 47002 (2009)
CrossRef ADS Google scholar
[11]
M. S. Torikachvili, S. L. Bud’ko, N. Ni, and P. C. Canfield, Pressure induced superconductivity in CaFe2As2, Phys. Rev. Lett. 101(5), 057006 (2008)
CrossRef ADS Google scholar
[12]
H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs, Nature 453(7193), 376 (2008)
CrossRef ADS Google scholar
[13]
P. L. Alireza, Y. T. Ko, J. Gillett, C. M. Petrone, J. M. Cole, G. G. Lonzarich, and S. E. Sebastian, Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures, J. Phys.: Condens. Matter 21(1), 012208 (2009)
CrossRef ADS Google scholar
[14]
L. Sun, X. J. Chen, J. Guo, P. Gao, Q. Z. Huang, H. Wang, M. Fang, X. Chen, G. Chen, Q. Wu, C. Zhang, D. Gu, X. Dong, L. Wang, K. Yang, A. Li, X. Dai, H. K. Mao, and Z. Zhao, Re-emerging superconductivity at 48 K in iron chalcogenides, Nature 483(7387), 67 (2012)
CrossRef ADS Google scholar
[15]
S. J. E. Carlsson, F. Levy-Bertrand, C. Marcenat, A. Sulpice, J. Marcus, S. Pairis, T. Klein, M. Núñez-Regueiro, G. Garbarino, T. Hansen, V. Nassif, and P. Toulemonde, Effect of the isoelectronic substitution of Sb for As on the magnetic and structural properties of LaFe(As1−xSbx)O, Phys. Rev. B 84(10), 104523 (2011)
CrossRef ADS Google scholar
[16]
K. K. Hu, B. Gao, Q. C. Ji, Y. H. Ma, H. Zhang, G. Mu, F. Q. Huang, C. B. Cai, and X. M. Xie, Impurity scattering effect in Pd-doped superconductor SrPt3P, Front. Phys. 11(4), 117403 (2016)
CrossRef ADS Google scholar
[17]
J. Prakash, S. J. Singh, G. Thakur, S. Patnaik, and A. K. Ganguli, The effect of antimony doping on the transport and magnetic properties of Ce(O/F)FeAs, Supercond. Sci. Technol. 24(12), 125008 (2011)
CrossRef ADS Google scholar
[18]
S. J. Singh, J. Prakash, S. Patnaik, and A. K. Ganguli, Enhancement of the superconducting transition temperature and upper critical field of LaO0.8F0.2Fe As with antimony doping, Supercond. Sci. Technol. 22(4), 045017 (2009)
CrossRef ADS Google scholar
[19]
Q. Ji, B. Gao, G. Mu, T. Hu, W. Li, Y. Liu, Y. Ma, and X. Xie, Enhancement of superconductivity by Sbdoping in the hole-doped iron-pnictide superconductor Pr1−xSrxFeAsO, Physica C 498, 50 (2014)
CrossRef ADS Google scholar
[20]
X. Xing, W. Zhou, B. Xu, N. Li, Y. Sun, Y. Zhang, and Z. Shi, Co-co-doping effect on superconducting properties of 112-type Ca0.8La0.2FeAs2 single crystals, J. Phys. Soc. Jpn. 84(7), 075001 (2015)
CrossRef ADS Google scholar
[21]
H. Yakita, H. Ogino, A. Sala, T. Okada, A. Yamamoto, K. Kishio, A. Iyo, H. Eisaki, and J. Shimoyama, Co and Mn doping effect in polycrystalline (Ca, La) and (Ca, Pr)FeAs2 superconductors, Supercond. Sci. Technol. 28(6), 065001 (2015)
CrossRef ADS Google scholar
[22]
K. Kudo, K. Iba, M. Takasuga, Y. Kitahama, J. Matsumura, M. Danura, Y. Nogami, and M. Nohara, Emergence of superconductivity at 45 K by lanthanum and phosphorus co-doping of CaFe2As2, Sci. Rep. 3, 1478 (2013)
CrossRef ADS Google scholar
[23]
K. Kudo, Y. Kitahama, K. Fujimura, T. Mizukami, H. Ota, and M. Nohara, Superconducting transition temperatures of up to 47 K from simultaneous rare-earth element and antimony doping of 112-type CaFeAs2, J. Phys. Soc. Jpn. 83(9), 093705 (2014)
CrossRef ADS Google scholar
[24]
S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn, and J. Paglione, Structural collapse and superconductivity in rare-earth-doped CaFe2As2, Phys. Rev. B 85(2), 024525 (2012)
CrossRef ADS Google scholar
[25]
A. Kreyssig, M. A. Green, Y. Lee, G. D. Samolyuk, P. Zajdel, J. W. Lynn, S. L. Bud’ko, M. S. Torikachvili, N. Ni, S. Nandi, J. B. Leão, S. J. Poulton, D. N. Argyriou, B. N. Harmon, R. J. McQueeney, P. C. Canfield, and A. I. Goldman, Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering, Phys. Rev. B 78(18), 184517 (2008)
CrossRef ADS Google scholar
[26]
A. I. Goldman, A. Kreyssig, K. Prokeš, D. K. Pratt, D. N. Argyriou, J. W. Lynn, S. Nandi, S. A. J. Kimber, Y. Chen, Y. B. Lee, G. Samolyuk, J. B. Leão, S. J. Poulton, S. L. Bud’ko, N. Ni, P. C. Canfield, B. N. Harmon, and R. J. McQueeney, Lattice collapse and quenching of magnetism in CaFe2As2 under pressure: A single-crystal neutron and X-ray diffraction investigation, Phys. Rev. B 79(2), 024513 (2009)
CrossRef ADS Google scholar
[27]
B. Gao, X. Li, Q. Ji, G. Mu, W. Li, T. Hu, A. Li, and X. Xie, Phase diagram and weak-link behavior in Nddoped CaFe2As2, New J. Phys. 16(11), 113024 (2014)
CrossRef ADS Google scholar
[28]
K. Zhao, Q. Q. Liu, X. C. Wang, Z. Deng, Y. X. Lv, J. L. Zhu, F. Y. Li, and C. Q. Jin, Doping dependence of the superconductivity of (Ca1−xNax)Fe2As2, Phys. Rev. B 84(18), 184534 (2011)
CrossRef ADS Google scholar
[29]
J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, Transport and magnetic properties of La-doped CaFe2As2, Phys. Rev. B 85(14), 144514 (2012)
CrossRef ADS Google scholar
[30]
D. M. Wang, X. C. Shangguan, J. B. He, L. X. Zhao, Y. J. Long, P. P. Wang, and L. Wang, Superconductivity at 35.5 K in K-doped CaFe2As2, J. Supercond. Nov. Magn. 26(6), 2121 (2013)
CrossRef ADS Google scholar
[31]
B. Lv, L. Deng, M. Gooch, F. Wei, Y. Sun, J. K. Meen, Y. Y. Xue, B. Lorenz, and C. W. Chu, Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure, Proc. Natl. Acad. Sci. USA 108(38), 15705 (2011)
CrossRef ADS Google scholar
[32]
Z. Gao, Y. Qi, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, and Y. Ma, Synthesis and properties of La-doped CaFe2As2 single crystals with Tc= 42.7 K, Europhys. Lett. 95(6), 67002 (2011)
CrossRef ADS Google scholar
[33]
L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez, A. U. B. Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phase diagram of the iron arsenide superconductors Ca(Fe1−xCox)2As2 (0≤x≤0.2), Phys. Rev. B 83(9), 094523 (2011)
CrossRef ADS Google scholar
[34]
N. Kumar, S. Chi, Y. Chen, K. Rana, A. Nigam, A. Thamizhavel, W. Ratcliff, S. Dhar, and J. Lynn, Evolution of the bulk properties, structure, magnetic order, and superconductivity with Ni doping in CaFe2−xNixAs2, Phys. Rev. B 80(14), 144524 (2009)
CrossRef ADS Google scholar
[35]
M. Torikachvili, S. Bud’ko, N. Ni, P. Canfield, and S. Hannahs, Effect of pressure on transport and magnetotransport properties in CaFe2As2 single crystals, Phys. Rev. B 80(1), 014521 (2009)
CrossRef ADS Google scholar
[36]
Y. Sun, W. Zhou, L. J. Cui, J. C. Zhuang, Y. Ding, F. F. Yuan, J. Bai, and Z. X. Shi, Evidence of two superconducting phases in Ca1−xLaxFe2As2, AIP Adv. 3(10), 102120 (2013)
CrossRef ADS Google scholar
[37]
W. Zhou, F. F. Yuan, J. C. Zhuang, Y. Sun, Y. Ding, L. J. Cui, J. Bai, and Z. X. Shi, Upper critical fields and anisotropy of Ca1−xLaxFe2As2 single crystals, Supercond. Sci. Technol. 26(9), 095003 (2013)
CrossRef ADS Google scholar
[38]
K. Gofryk, M. Pan, C. Cantoni, B. Saparov, J. E. Mitchell, and A. S. Sefat, Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2, Phys. Rev. Lett. 112(4), 047005 (2014)
CrossRef ADS Google scholar
[39]
I. Zeljkovic, D. Huang, C.L. Song, B. Lv, C.W. Chu, and J. E. Hoffman, Nanoscale surface element identification and dopant homogeneity in the high-Tc superconductor PrxCa1−xFe2As2, Phys. Rev. B 87, 201108(R) (2013)
[40]
L. Z. Deng, B. Lv, K. Zhao, F. Y. Wei, Y. Y. Xue, Z. Wu, and C. W. Chu, Evidence for defect-induced superconductivity up to 49 K in (Ca1−xRx)Fe2As2, Phys. Rev. B 93(5), 054513 (2016)
CrossRef ADS Google scholar
[41]
Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, C. Wang, and Y. Ma, Transport properties and anisotropy in rare-earth doped CaFe2As2 single crystals with Tcabove 40 K, Supercond. Sci. Technol. 25(4), 045007 (2012)
CrossRef ADS Google scholar
[42]
S. R. Saha, T. Drye, S. K. Goh, L. E. Klintberg, J. M. Silver, F. M. Grosche, M. Sutherland, T. J. S. Munsie, G. M. Luke, D. K. Pratt, J. W. Lynn, and J. Paglione, Segregation of antiferromagnetism and hightemperature superconductivity in Ca1−xLaxFe2As2, Phys. Rev. B 89(13), 134516 (2014) 127401-6

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2731 KB)

Accesses

Citations

Detail

Sections
Recommended

/