Transport through a quantum dot coupled to two Majorana bound states

Qi-Bo Zeng, Shu Chen, L. You, Rong Lü

PDF(2826 KB)
PDF(2826 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127302. DOI: 10.1007/s11467-016-0620-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Transport through a quantum dot coupled to two Majorana bound states

Author information +
History +

Abstract

We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD–Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.

Keywords

quantum dot / Majorana bound states / Fano profile / QD–Kitaev ring / topologically trivial and nontrivial

Cite this article

Download citation ▾
Qi-Bo Zeng, Shu Chen, L. You, Rong Lü. Transport through a quantum dot coupled to two Majorana bound states. Front. Phys., 2017, 12(4): 127302 https://doi.org/10.1007/s11467-016-0620-3

References

[1]
S. R. Elliott and M. Franz, Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87(1), 137 (2015)
CrossRef ADS Google scholar
[2]
T. D. Stanescu and S. Tewari, Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment., J. Phys.: Condens. Matter 25(23), 233201 (2013)
CrossRef ADS Google scholar
[3]
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
CrossRef ADS Google scholar
[4]
M. Stone and R. Roy, Edge modes, edge currents, and gauge invariance in px+ ipysuperfluids and superconductors, Phys. Rev. B 69(18), 184511 (2004)
CrossRef ADS Google scholar
[5]
P. Fendley, M. P. A. Fisher, and C. Nayak, Edge states and tunneling of non-Abelian quasiparticles in the n= 5/2 quantum Hall state and p+ ipsuperconductors, Phys. Rev. B 75(4), 045317 (2007)
CrossRef ADS Google scholar
[6]
S. Raghu, A. Kapitulnik, and S. A. Kivelson, Hidden quasi-one-dimensional superconductivity in Sr2RuO4, Phys. Rev. Lett. 105(13), 136401 (2010)
CrossRef ADS Google scholar
[7]
S. B. Chung, H. J. Zhang, X. L. Qi, and S. C. Zhang, Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures, Phys. Rev. B 84, 060510(R) (2011)
[8]
R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)
CrossRef ADS Google scholar
[9]
Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
CrossRef ADS Google scholar
[10]
X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A 85, 021603(R) (2012)
[11]
C. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. Zou, G. Guo, and C. Zhang, Topological superfluids with finitemomentum pairing and Majorana fermions, Nat. Commun. 4, 2710 (2013)
CrossRef ADS Google scholar
[12]
C. Chen, Inhomogeneous topological superfluidity in one-dimensional spin–orbit-coupled Fermi gases, Phys. Rev. Lett. 111(23), 235302 (2013)
CrossRef ADS Google scholar
[13]
J. Ruhman, E. Berg, and E. Altman, Topological states in a one-dimensional Fermi gas with attractive interaction, Phys. Rev. Lett. 114(10), 100401 (2015)
CrossRef ADS Google scholar
[14]
N. B. Kopnin and M. M. Salomaa, Mutual friction in superfluid He3: Effects of bound states in the vortex core, Phys. Rev. B 44(17), 9667 (1991)
CrossRef ADS Google scholar
[15]
X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions, Phys. Rev. Lett. 102(18), 187001 (2009)
CrossRef ADS Google scholar
[16]
S. B. Chung and S. C. Zhang, Detecting the Majorana fermion surface state of He3tB through spin relaxation, Phys. Rev. Lett. 103(23), 235301 (2009)
CrossRef ADS Google scholar
[17]
S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani, Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor, Phys. Rev. B 88, 020407(R) (2013)
[18]
S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
CrossRef ADS Google scholar
[19]
H. Y. Hui, P. M. R. Brydon, J. D. Sau, S. Tewari, and S. Das Sarma, Majorana fermions in ferromagnetic chains on the surface of bulk spin–orbit coupled s-wave superconductors, Sci. Rep. 5, 8880 (2015)
CrossRef ADS Google scholar
[20]
E. Dumitrescu, B. Roberts, S. Tewari, J. D. Sau, and S. Das Sarma, Majorana fermions in chiral topological ferromagnetic nanowires, Phys. Rev. B 91(9), 094505 (2015)
CrossRef ADS Google scholar
[21]
T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Majorana fermions in semiconductor nanowires, Phys. Rev. B 84(14), 144522 (2011)
CrossRef ADS Google scholar
[22]
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductorsemiconductor nanowire devices, Science 336(6084), 1003 (2012)
CrossRef ADS Google scholar
[23]
M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device, Nano Lett. 12(12), 6414 (2012)
CrossRef ADS Google scholar
[24]
A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al– InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)
CrossRef ADS Google scholar
[25]
A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device, Phys. Rev. Lett. 110(12), 126406 (2013)
CrossRef ADS Google scholar
[26]
D. M. Badiane, M. Houzet, and J. S. Meyer, Nonequilibrium Josephson Effect through Helical Edge States, Phys. Rev. Lett. 107(17), 177002 (2011)
CrossRef ADS Google scholar
[27]
P. A. Ioselevich and M. V. Feigel’man, Anomalous Josephson current via Majorana bound states in topological insulators, Phys. Rev. Lett. 106(7), 077003 (2011)
CrossRef ADS Google scholar
[28]
A. M. Black-Schaffer and J. Linder, Majorana fermions in spin–orbit-coupled ferromagnetic Josephson junctions, Phys. Rev. B 84, 180509 (2011)
CrossRef ADS Google scholar
[29]
B. H. Wu and J. C. Cao, Tunneling transport through superconducting wires with Majorana bound states, Phys. Rev. B 85(8), 085415 (2012)
CrossRef ADS Google scholar
[30]
A. Zazunov, A. L. Yeyati, and R. Egger, Coulomb blockade of Majorana-fermion-induced transport, Phys. Rev. B 84(16), 165440 (2011)
CrossRef ADS Google scholar
[31]
A. Ueda and T. Yokoyama, Anomalous interference in Aharonov–Bohm rings with two Majorana bound states, Phys. Rev. B 90, 081405(R) (2014)
[32]
Y. Cao, P. Wang, G. Xiong, M. Gong, and X. Q. Li, Probing the existence and dynamics of Majorana fermion via transport through a quantum dot, Phys. Rev. B 86(11), 115311 (2012)
CrossRef ADS Google scholar
[33]
W. J. Gong, Sh. F. Zhang, Zh. Ch. Li, G. Yi, and Y. S. Zheng, Detection of a Majorana fermion zero mode by a T-shaped quantum-dot structure, Phys. Rev. B 89(24), 245413 (2014)
CrossRef ADS Google scholar
[34]
H. F. Lü, H. Z. Lu, and S. Q. Shen, Nonlocal noise cross correlation mediated by entangled Majorana fermions, Phys. Rev. B 86(7), 075318 (2012)
CrossRef ADS Google scholar
[35]
H. F. Lü, H. Z. Lu, and S. Q. Shen, Current noise cross correlation mediated by Majorana bound states, Phys. Rev. B 90(19), 195404 (2014)
CrossRef ADS Google scholar
[36]
H. F. Lü, H. Z. Lu, and S. Q. Shen, Enhanced current noise correlations in a Coulomb–Majorana device, Phys. Rev. B 93, 245418 (2016)
CrossRef ADS Google scholar
[37]
K. Flensberg, Non-Abelian operations on Majorana fermions via single-charge control, Phys. Rev. Lett. 106(9), 090503 (2011)
CrossRef ADS Google scholar
[38]
J. D. Sau, B. Swingle, and S. Tewari, Proposal to probe quantum nonlocality of Majorana fermions in tunneling experiments, Phys. Rev. B 92, 020511(R) (2015)
[39]
D. E. Liu and H. U. Baranger, Detecting a Majoranafermion zero mode using a quantum dot, Phys. Rev. B 84, 201308(R) (2011)
[40]
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Physics-Uspekhi 44(10S), 131 (2001)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2826 KB)

Accesses

Citations

Detail

Sections
Recommended

/