In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system
Yong Xin (辛勇), Lan-Xiang Sun (孙兰香), Zhi-Jia Yang (杨志家), Peng Zeng (曾鹏), Zhi-Bo Cong (丛智博), Li-Feng Qi (齐立峰)
In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system
To monitor the components of molten magnesium alloy during the smelting process in real time and online, we designed a standoff double-pulse laser-induced breakdown spectroscopy (LIBS) analysis system that can perform focusing, collecting and imaging of long-range samples. First, we tested the system on solid standard magnesium alloy samples in the laboratory to establish a basis for the online monitoring of the components of molten magnesium alloy in the future. The experimental results show that the diameters of the focus spots are approximately 1 mm at a range of 3 m, the ablation depth of the double-pulse mode is much deeper than that of the single-pulse mode, the optimum interpulse delay of the double pulse is inconsistent at different ranges, and the spectral intensity decays rapidly as the range increases. In addition, the enhancement effect of the double pulse at 1.89 m is greater than that at 2.97 m, the maximum enhancement is 7.1-fold for the Y(I)550.35-nm line at 1.89 m, and the calibration results at 1.89 m are better than those at 2.97 m. At 1.89 m, the determination coefficients (R2) of the calibration curves are approximately 99% for Y, Pr, and Zr; the relative standard deviations (RSDs) are less than 10% for Y, Pr, and Zr; the root mean square errors (RMSEs) are less than 0.037% for Pr and Zr; the limits of detection (LODs) are less than 1000 ppm for Y, Pr, and Zr; and the LODs of Y, Pr, and Zr at 2.97 m are higher than those at 1.89 m. Additionally, we tested the system on molten magnesium alloy in a magnesium alloy plant. The calibration results of the liquid magnesium alloy are not as favorable as those of the sampling solid magnesium alloys. In particular, the RSDs of the liquid magnesium alloy are approximately 20% for Pr and La. However, with future improvements in the experimental conditions, the developed system is promising for the in situ analysis of molten magnesium alloy.
laser-induced breakdown spectroscopy / standoff / double-pulse / online / magnesium alloy
[1] |
W. J. Ding, Y. J. Wu, L. M. Peng, X. Q. Zeng, D. L. Lin, and B. Chen, Research and application development of advanced magnesium alloys, Materials China 29(8), 37 (2010)
|
[2] |
A. W. Miziolek, V. Palleschi, and I. Schechter, Laserinduced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge: Cambridge University Press, 2006
CrossRef
ADS
Google scholar
|
[3] |
D. A. Cremers and L. J. Radziemski, Handbook of Laser-induced Breakdown Spectroscopy, New York: John Wiley & Sons, Ltd, 2006
CrossRef
ADS
Google scholar
|
[4] |
R. Noll, Laser-induced Breakdown Spectroscopy: Fundamentals and Applications, Berlin: Springer, 2011
|
[5] |
D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)
CrossRef
ADS
Google scholar
|
[6] |
F. J. Fortes and J. J. Laserna, The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon, Spectrochim. Acta B At. Spectrosc. 65(12), 975 (2010)
CrossRef
ADS
Google scholar
|
[7] |
J. Kaiser, K. Novotný, M. Z. Martin, A. Hrdlicka, R. Malina, M. Hartl, V. Adam, and R. Kizek, Trace elemental analysis by laser-induced breakdown spectroscopy — Biological applications, Surf. Sci. Rep. 67(11-12), 233 (2012)
CrossRef
ADS
Google scholar
|
[8] |
J. El Haddad, L. Canioni, and B. Bousquet, Good practices in LIBS analysis: Review and advices, Spectrochim. Acta B At. Spectrosc. 101, 171 (2014)
CrossRef
ADS
Google scholar
|
[9] |
P. Pořízka, P. Prochazková, D. Prochazka, L. Sládková, J. Novotný, M. Petrilak, M. Brada, O. Samek, Z. Pilát, P. Zemánek, V. Adam, R. Kizek, K. Novotný, and J. Kaiser, Algal biomass analysis by laser-based analytical techniques—A review, Sensors (Basel Switzerland) 14(9), 17725 (2014)
CrossRef
ADS
Google scholar
|
[10] |
A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, Assessment of LIBS for spectrochemical analysis: A review, Appl. Spectrosc. Rev. 47(1), 14 (2012)
CrossRef
ADS
Google scholar
|
[11] |
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef
ADS
Google scholar
|
[12] |
J. Yu and R. E. Zeng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 647 (2012)
CrossRef
ADS
Google scholar
|
[13] |
J. Vrenegor, R. Noll, and V. Sturm, Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements, Spectrochim. Acta B At. Spectrosc. 60(7–8), 1083 (2005)
CrossRef
ADS
Google scholar
|
[14] |
M. A. Gondal and T. Hussain, Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy, Talanta 71(1), 73 (2007)
CrossRef
ADS
Google scholar
|
[15] |
B. Hettinger, V. Hohreiter, M. Swingle, and D. W. Hahn, Laser-induced breakdown spectroscopy for ambient air particulate monitoring: correlation of total and speciated aerosol particle counts, Appl. Spectrosc. 60(3), 237 (2006)
CrossRef
ADS
Google scholar
|
[16] |
F. Ferioli and S. G. Buckley, Measurements of hydrocarbons using laser-induced breakdown spectroscopy, Combust. Flame 144(3), 435 (2006)
CrossRef
ADS
Google scholar
|
[17] |
T. B. Yuan, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, Coal property analysis using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
CrossRef
ADS
Google scholar
|
[18] |
L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)
CrossRef
ADS
Google scholar
|
[19] |
L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)
CrossRef
ADS
Google scholar
|
[20] |
W. D. Zhou, K. X. Li, Q. M. Shen, Q. Chen, and J. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)
CrossRef
ADS
Google scholar
|
[21] |
Y. Feng, J. J. Yang, J. M. Fan, G. X. Yao, X. H. Ji, X. Y. Zhang, X. F. Zheng, and Z. F. Cui, Investigation of laser-induced breakdown spectroscopy of a liquid jet, Appl. Opt. 49(13), C70 (2010)
CrossRef
ADS
Google scholar
|
[22] |
C. Carlhoff and S. Kirchhoff, Laser-induced emission spectroscopy for on-line analysis of molten metal in a steel converter, Laser und Optoelektronik 23, 50 (1991)
|
[23] |
R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry applications for production control and quality assurance in the steel industry, Spectrochim. Acta B At. Spectrosc. 56(6), 637 (2001)
CrossRef
ADS
Google scholar
|
[24] |
L. Peter, V. Sturm, and R. Noll, Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet, Appl. Opt. 42(30), 6199 (2003)
CrossRef
ADS
Google scholar
|
[25] |
R. D. Saro, A. Weisberg, and J. Craparo, in: Final Report Prepared for the U.S. Department of Energy Under Award Number DE-FC02-99CH10974, 2005
|
[26] |
G. Hubmer, R. Kitzberger, and K. Morwald, Application of LIBS to the in-line process control of liquid highalloy steel under pressure, Anal. Bioanal. Chem. 385(2), 219 (2006)
CrossRef
ADS
Google scholar
|
[27] |
S. Palanco, S. Conesa, and J. J. Laserna, Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer, J. Anal. At. Spectrom. 19(4), 462 (2004)
CrossRef
ADS
Google scholar
|
[28] |
T. Victor, Future of the online control of molten metal, Metall. Anal. 33(4), 13 (2013)
|
[29] |
F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
CrossRef
ADS
Google scholar
|
[30] |
L. X. Sun, H. B. Yu, and Y. Xin, Z. B. Cong and H. Y. Kong, On-line monitoring of molten steel compositions by laser-induced breakdown spectroscopy, Chin. J. Lasers 38(9), 0915002 (2011)
CrossRef
ADS
Google scholar
|
[31] |
L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B At. Spectrosc. 112, 40 (2015)
CrossRef
ADS
Google scholar
|
[32] |
K. Chen, J. D. Lu, and J. Y. Li, Real-time quantitative analysis of multi-elements in liquid steel by LIBS, Guangpuxue Yu Guangpu Fenxi 31(3), 823 (2011)
|
[33] |
P. Pořízka, I. Ročňáková, J. Klus, D. Prochazka, L. Sládková, P. Šperka, Z. Spotz, L. Čelko, K. Novotný, and J. Kaiser, Estimating the grade of Mg corrosion using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 30(10), 2099 (2015)
CrossRef
ADS
Google scholar
|
[34] |
F. Sorrentino, G. Carelli, F. Francesconi, M. Francesconi, P. Marsili, G. Cristoforetti, S. Legnaioli, V. Palleschi, and E. Tognoni, Fast analysis of complex metallic alloys by double-pulse time-integrated laserinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 64(10), 1068 (2009)
CrossRef
ADS
Google scholar
|
[35] |
D. Stratis, K. Eland, and M. Angel, Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission, Appl. Spectrosc. 54(9), 1270 (2000)
CrossRef
ADS
Google scholar
|
[36] |
I. Gaona, P. Lucena, J. Moros, F. J. Fortes, S. Guirado, J. Serrano, and J. J. Laserna, Evaluating the use of standoff LIBS in architectural heritage: surveying the Cathedral of Málaga, J. Anal. At. Spectrom. 28(6), 810 (2013)
CrossRef
ADS
Google scholar
|
[37] |
R. C. Wiens, S. Maurice, B. Barraclough, M. Saccoccio, W. C. Barkley,
CrossRef
ADS
Google scholar
|
[38] |
S. Palanco, C. Lo’pez-Moreno, and J. J. Laserna, Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing, Spectrochim. Acta B At. Spectrosc. 61(1), 88 (2006)
CrossRef
ADS
Google scholar
|
[39] |
B. Sallé, P. Mauchien, and S. Maurice, Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects, Spectrochim. Acta B At. Spectrosc. 62(8), 739 (2007)
CrossRef
ADS
Google scholar
|
[40] |
L. F. Qi, L. X. Sun, Y. Xin, Z. B. Cong, Y. Li, and H. B. Yu, Application of stand-off double-pulse laser-induced breakdown spectroscopy in elemental analysis of magnesium alloy, Plasma Sci. Technol. 17(8), 676 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |