Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media

Zhen-Kun Wu, Peng Li, Yu-Zong Gu

PDF(1345 KB)
PDF(1345 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 124203. DOI: 10.1007/s11467-016-0613-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media

Author information +
History +

Abstract

We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.

Keywords

Airy beam / nonlocal nonlinear / phase transition / intensity distribution

Cite this article

Download citation ▾
Zhen-Kun Wu, Peng Li, Yu-Zong Gu. Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media. Front. Phys., 2017, 12(5): 124203 https://doi.org/10.1007/s11467-016-0613-2

References

[1]
M. V. Berry and N. L. Balazs, Nonspreading wave packets, Am. J. Phys. 47(3), 264 (1979)
CrossRef ADS Google scholar
[2]
G. A. Siviloglou and D. N. Christodoulides, Accelerating finite energy Airy beams, Opt. Lett. 32(8), 979 (2007)
CrossRef ADS Google scholar
[3]
G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Observation of accelerating Airy beams, Phys. Rev. Lett. 99(21), 213901 (2007)
CrossRef ADS Google scholar
[4]
J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Self-healing properties of optical Airy beams, Opt. Express 16(17), 12880 (2008)
CrossRef ADS Google scholar
[5]
T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nonlinear generation and manipulation of Airy beams, Nat. Photonics 3(7), 395 (2009)
CrossRef ADS Google scholar
[6]
A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Airy-Bessel wave packets as versatile linear light bullets, Nat. Photonics 4(2), 103 (2010)
CrossRef ADS Google scholar
[7]
P. Zhang, J. Prakash, Z. Zhang, M. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, Trapping and guiding microparticles with morphing autofocusing Airy beams, Opt. Lett. 36(15), 2883 (2011)
CrossRef ADS Google scholar
[8]
P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Curved plasma channel generation using ultraintense Airy beams, Science 324(5924), 229 (2009)
CrossRef ADS Google scholar
[9]
J. Amako, D. Sawaki, and E. Fujii, Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics, J. Opt. Soc. Am. B 20(12), 2562 (2003)
CrossRef ADS Google scholar
[10]
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 12, 053010 (2010)
[11]
D. Abdollahpour, S. Suntsov, D. Papazoglou, and S. Tzortzakis, Spatiotemporal Airy light bullets in the linear and nonlinear regimes, Phys. Rev. Lett. 105(25), 253901 (2010)
CrossRef ADS Google scholar
[12]
Y. Q. Zhang, M. R. BelićZ. K. Wu, H. B. Zheng, K. Q. Lu, Y. Y. Li, and Y. P. Zhang, Soliton pair generation in the interactions of Airy and nonlinear accelerating beams, Opt. Lett. 38(22), 4585 (2013)
CrossRef ADS Google scholar
[13]
Y. Q. Zhang, M. R. BelićH. B. Zheng, H. X. Chen, C. B. Li, Y. Y. Li, and Y. P. Zhang, Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media, Opt. Express 22(6), 7160 (2014)
CrossRef ADS Google scholar
[14]
Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, Analytical theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality, Phys. Rev. A 82, 013826 (2010)
CrossRef ADS Google scholar
[15]
W. Hu, T. Zhang, Q. Guo, L. Xuan, and S. Lan, Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals, Appl. Phys. Lett. 89, 071111 (2006)
CrossRef ADS Google scholar
[16]
R. Bekenstein and M. Segev, Self-accelerating optical beams in highly nonlocal nonlinear media, Opt. Express 19(24), 23706 (2011)
CrossRef ADS Google scholar
[17]
G. Q. Zhou, R. P. Chen, and G. Y. Ru, Propagation of an Airy beam in a strongly nonlocal nonlinear media, Laser. Phys. Lett. 11, 105001 (2014)
CrossRef ADS Google scholar
[18]
R. Bekenstein, R. Schley, M. Mutzafi, C. Rotschild, and M. Segev, Optical simulations of gravitational effects in the Newton-Schrodinger system, Nat. Phys. 11, 872 (2015)
CrossRef ADS Google scholar
[19]
M. Shen, J. S. Gao, and L. J. Ge, Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media, Sci. Rep. 5, 9814 (2015)
CrossRef ADS Google scholar
[20]
M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Routing of anisotropic spatial solitons and modulational instability in liquid crystals, Nature 432(7018), 733 (2004)
CrossRef ADS Google scholar
[21]
C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, Longrange interactions between optical solitons, Nat. Phys. 2(11), 769 (2006)
CrossRef ADS Google scholar
[22]
J. K. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM, 2010
CrossRef ADS Google scholar
[23]
Y. Q. Zhang, M. R. BelićL. Zhang, W. P. Zhong, D. Y. Zhu, R. M. Wang, and Y. P. Zhang, Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential, Opt. Express 23(8), 10467 (2015)
CrossRef ADS Google scholar
[24]
F. Xiao, B. Li, M. Wang, W. Zhu, P. Zhang, S. Liu, M. Premaratne, and J. Zhao, Optical Bloch oscillations of an Airy beam in a photonic lattice with a linear transverse index gradient, Opt. Express 22(19), 22763 (2014)
CrossRef ADS Google scholar
[25]
Y. Q. Zhang, X. Liu, M. R. BelićW. P. Zhong, M. S. Petrović and Y. P. Zhang, Automatic Fourier transform and self-Fourier beams due to parabolic potential, Ann. Phys. 363, 305 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1345 KB)

Accesses

Citations

Detail

Sections
Recommended

/