Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain

Xiao-Xia Wang , Wei-Hao Zheng , Qing-Lin Zhang , Xiao-Li Zhu , Hong Zhou , Xiu-Juan Zhuang , An-Lian Pan , Xiang-Feng Duan

Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 127801

PDF (2079KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 127801 DOI: 10.1007/s11467-016-0612-3
RESEARCH ARTICLE

Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain

Author information +
History +
PDF (2079KB)

Abstract

Single-crystal erbium silicate nanowires have attracted considerable attention because of their high optical gain. In this work, we report the controlled synthesis of silicon-erbium ytterbium silicate coreshell nanowires and fine-tuning the erbium mole fraction in the shell from x=0.3 to x=1.0, which corresponds to changing the erbium concentration from 4.8×1021 to 1.6×1022 cm−3. By controlling and properly optimizing the composition of erbium and ytterbium in the nanowires, we can effectively suppress upconversion photoluminescence while simultaneously enhancing near-infrared emission. The composition-optimized nanowires have very long photoluminescence lifetimes and large emission crosssections, which contribute to the high optical gain that we observed. We suspended these concentrationoptimized nanowires in the air to measure and analyze their propagation loss and optical gain in the near-infrared communication band. Through systematic measurements using wires with different core sizes, we obtained a maximum net gain of 20±8 dB·mm−1, which occurs at a wavelength of 1534 nm, for a nanowire with a diameter of 600 nm and a silicon core diameter of 300 nm.

Keywords

erbium ytterbium silicate / nanowire / erbium concentration / gain

Cite this article

Download citation ▾
Xiao-Xia Wang, Wei-Hao Zheng, Qing-Lin Zhang, Xiao-Li Zhu, Hong Zhou, Xiu-Juan Zhuang, An-Lian Pan, Xiang-Feng Duan. Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain. Front. Phys., 2017, 12(1): 127801 DOI:10.1007/s11467-016-0612-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Silicon nanostructures for photonics and photovoltaics, Nat. Nanotechnol. 9(1), 19 (2014)

[2]

N. Liu, W. Y. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)

[3]

R. L. Savio, M. Galli, M. Liscidini, L. C. Andreani, G. Franzò, F. Iacona, M. Miritello, A. Irrera, D. Sanfilippo, A. Piana, and F. Priolo, Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide, Appl. Phys. Lett. 104, 121107 (2014)

[4]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. Wang, L. Gao, and Z. Zhou, Optical amplification in Er/Yb silicate strip loaded waveguide, Appl. Phys. Lett. 99(16), 161115 (2011)

[5]

N. P. Dasgupta and P. D. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)

[6]

H. S. Han, S. Y. Seo, J. H. Shin, and N. Park, Coefficient determination related to optical gain in erbiumdoped silicon-rich silicon oxide waveguide amplifier, Appl. Phys. Lett. 81(20), 3720 (2002)

[7]

Lee, J. H. Shin, and N. Park, Optical gain at 1.5 m in nanocrystal Si sensitized, Er-doped silica waveguide using top-pumping 470 nm LED, J. Lightwave Technol. 23, 19 (2005)

[8]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, Efficient luminescence and energy transfer in erbium silicate thin films, Adv. Mater. 19(12), 1582 (2007)

[9]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, Self-assembled infrared-luminescent Er–Si–O crystallites on silicon, Appl. Phys. Lett. 85, 4343 (2004)

[10]

H. J. Choi, J. H. Shin, K. Suh, H. K. Seong, H. C. Han, and J. C. Lee, Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence, Nano Lett. 5(12), 2432 (2005)

[11]

A. L. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength, Opt. Mater. Express 1(7), 1202 (2011)

[12]

X. J. Wang, S. Wang, and Z. Zhou, Low threshold ErxYb(Y)2xSiO5 nanowire waveguide amplifier, Appl. Opt. 54(9), 2501 (2015)

[13]

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material, Appl. Phys. Lett. 100(24), 241905 (2012)

[14]

L. Yin, D. Shelhammer, G. Zhao, Z. Liu, and C. Z. Ning, Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material, Appl. Phys. Lett. 103(12), 121902 (2013)

[15]

C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, Growth, processing, and optical properties of epitaxial Er2O3 on silicon, Opt. Express 16(24), 19649 (2008)

[16]

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, Fabrication and characterization of Er silicates on SiO2/Si substrates,Appl. Phys. Lett. 95(4), 041906 (2009)

[17]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5films on SiO2/Si substrates, Appl. Phys. Lett. 98(7), 071903 (2011)

[18]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, Photoluminescence enhancement and high gain amplification of ErxY2xSiO5 waveguide, J. Appl. Phys. 108(1), 013506 (2010)

[19]

S. A. Dimitri Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, Giant optical gain in a rare-earth-iondoped microstructure, Adv. Mater. 24, OP19 (2012)

[20]

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, High gain submicrometer optical amplifier at near-infrared communication band, Phys. Rev. Lett. 115(2), 027403 (2015)

[21]

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. Zhou, Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate, Opt. Mater. 34(8), 1289 (2012)

[22]

P. Cardile, M. Miritello, and F. Priolo, Energy transfer mechanisms in Er-Yb-Y disilicate thin films, Appl. Phys. Lett. 100(25), 251913 (2012)

[23]

M. Miritello, P. Cardile, R. Lo Savio, and F. PrioloEnergy transfer and enhanced 1540 nm emission in Erbium-Ytterbium disilicate thin films, Opt. Express. 19(21), 20761 (2011)

[24]

W. J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm, J. Lightwave Technol. 9(2), 234 (1991)

[25]

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, A compact high-performance optical waveguide amplifier, IEEE Photonics Technol. Lett. 16(12), 2607 (2004)

[26]

Z. C. Liu, G. J. Zhao, L. J. Yin, and C. Z. Ning, Demonstration of Net Gain in an Erbium Chloride Silicate Single Nanowire Waveguide, Proceeding of Conference on Lasers and Electro-Optics: Science and Innovations, <Date>June 2014</Date> <BibTranslator>San Jose</BibTranslator> SM4H.4 (2014)

[27]

W. J. Miniscalco and R. S. Quimby, General procedure for the analysis of Er3+ cross sections, Opt. Lett. 16(4), 258 (1991)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2079KB)

1221

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/