Strongly correlated Fermi systems as a new state of matter

V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, V. A. Khodel

PDF(1980 KB)
PDF(1980 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 117103. DOI: 10.1007/s11467-016-0608-0
REVIEW ARTICLE
REVIEW ARTICLE

Strongly correlated Fermi systems as a new state of matter

Author information +
History +

Abstract

The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimental data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.

Keywords

quantum phase transition / flat bands / non-Fermi-liquid states / strongly correlated electron systems / quantum spin liquids / heavy fermions / quasicrystals / thermoelectric and thermomagnetic effects / scaling behavior / new state of matter

Cite this article

Download citation ▾
V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, V. A. Khodel. Strongly correlated Fermi systems as a new state of matter. Front. Phys., 2016, 11(5): 117103 https://doi.org/10.1007/s11467-016-0608-0

References

[1]
L. D. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 3(6), 920 (1957)
[2]
L. D. Landau, On the theory of the Fermi liquid, Sov. Phys. JETP 8(1), 70 (1959)
[3]
E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, Oxford: Pergamon Press, 1980
[4]
V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Scaling behavior of heavy-fermion metals, Phys. Rep. 492(2–3), 31 (2010)
CrossRef ADS Google scholar
[5]
M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds, Solid-State Sciences182, Springer, Heidelberg, New York, Dordrecht, London, 2015
[6]
V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, New approach in the microscopic Fermi systems theory, Phys. Rep. 249(1–2), 1 (1994)
CrossRef ADS Google scholar
[7]
V. R. Shaginyan, Universal behavior of heavy-fermion metals near a quantum critical point, JETP Lett. 79(6), 286 (2004)
CrossRef ADS Google scholar
[8]
I. Ya. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8(2), 361 (1959)
[9]
P. Noziéres, Properties of Fermi liquids with a finite range interaction, J. Phys. I France 2(4), 443 (1992)
[10]
A. Casey, H. Patel, J. Nyeki, B. P. Cowan, and J. J. Saunders, Strongly correlated two dimensional fluid 3He, Low Temp. Phys. 113(3), 293 (1998)
CrossRef ADS Google scholar
[11]
M. Neumann, J. Nyéki, B. Cowan, and J. Saunders, Bilayer 3He: A simple two-dimensional heavy-fermion system with quantum criticality, Science 317(5843), 1356 (2007)
CrossRef ADS Google scholar
[12]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Stephanovich, Universal behavior of two-dimensional 3He at low temperatures, Phys. Rev. Lett. 100(9), 096406 (2008)
CrossRef ADS Google scholar
[13]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef ADS Google scholar
[14]
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef ADS Google scholar
[15]
V. A. Khodel and V. R. Shaginyan, Superfluidity in system with fermion condensate, JETP Lett. 51(9), 553 (1990)
[16]
G. E. Volovik, A new class of normal Fermi liquids, JETP Lett. 53(4), 222 (1991)
[17]
G. E. Volovik, T. T. Heikkilá, and N. B. Kopnin, Flat bands in topological media, JETP Lett. 94(3), 252 (2011)
[18]
G. E. Volovik, From standard model of particle physics to room-temperature superconductivity, Phys. Scr. 215(T164), 014014 (2015)
CrossRef ADS Google scholar
[19]
T. T. Heikkilá and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, arxiv: 1504.05824, submitted as a chapter to the book on Basic Physics of functionalized Graphite
[20]
M. Ya. Amusia and V. R.Shaginyan, Fermion condensate as a new state of matter, Contrib. Plasma Phys. 53(10), 721 (2013)
CrossRef ADS Google scholar
[21]
D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice, Phys. Rev. Lett. 112(7), 070403 (2014)
CrossRef ADS Google scholar
[22]
M. V. Zverev, V. A. Khodel, V. R. Shaginyan, and M. Baldo, Critical experiments in the search for fermion condensation, JETP Lett. 65(11), 863 (1997)
CrossRef ADS Google scholar
[23]
H. Löhneysen, Non-Fermi-liquid behaviour in the heavyfermion system CeCu1−xAux, J. Phys.: Condens. Matter 8(48), 9689 (1996)
CrossRef ADS Google scholar
[24]
V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh2Si2, Phys. Lett. A 374(4), 659 (2010)
CrossRef ADS Google scholar
[25]
D. Lidsky, J. Shiraishi, Y. Hatsugai, and M. Kohmoto, Simple exactly solvable models of non-Fermi-liquids, Phys. Rev. B 57(3), 1340 (1998)
CrossRef ADS Google scholar
[26]
V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Robustness of the Van Hove Scenario for high-Tc superconductors, Phys. Rev. Lett. 89(7), 076401 (2002)
CrossRef ADS Google scholar
[27]
S. S. Lee, Non-Fermi liquid from a charged black hole: A critical Fermi ball, Phys. Rev. D 79(8), 086006 (2009)
CrossRef ADS Google scholar
[28]
A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Merging of Landau levels in a strongly-interacting two-dimensional electron system in silicon, Phys. Rev. Lett. 112(18), 186402 (2014)
CrossRef ADS Google scholar
[29]
M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.H. Huang, C. W. Liu, and S. V. Kravchenko, Indication of the fermion condensation in a strongly correlated electron system in SiGe/Si/SiGe quantum wells, arXiv: 1604.08527
[30]
V. A. Khodel, J. W. Clark, and M. V. Zverev, Topology of the Fermi surface beyond the quantum critical point, Phys. Rev. B 78(7), 075120 (2008)
CrossRef ADS Google scholar
[31]
S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, Ground-state instability in systems of strongly interacting fermions, JETP Lett. 68(12), 942 (1998)
CrossRef ADS Google scholar
[32]
V. A. Khodel, Two scenarios of the quantum critical point, JETP Lett. 86(11), 721 (2008)
CrossRef ADS Google scholar
[33]
N. Oeschler, S. Hartmann, A. P. Pikul, C. Krellner, C. Geibel, and F. Steglich, Low-temperature specific heat of YbRh2Si2, Physica B 403(5–9), 1254 (2008)
CrossRef ADS Google scholar
[34]
V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay, Phys. Lett. A 373(26), 2281 (2009)
CrossRef ADS Google scholar
[35]
M. Brando, L. Pedrero, T. Westerkamp, C. Krellner, P. Gegenwart, C. Geibel, and F. Steglich, Magnetization study of the energy scales in YbRh2Si2 under chemical pressure, Phys. Status Solidi B 250(3), 485 (2013)
CrossRef ADS Google scholar
[36]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, General properties of phase diagrams of heavy-fermion metals, Europhys. Lett. 106(3), 37001 (2014)
CrossRef ADS Google scholar
[37]
D. Takahashi, S. Abe, H. Mizuno, D. A. Tayurskii, K. Matsumoto, H. Suzuki, and Y. Onuki, ac susceptibility and static magnetization measurements of CeRu2Si2 at small magnetic fields and ultralow temperatures, Phys. Rev. B 67(18), 180407 (2003)
CrossRef ADS Google scholar
[38]
A. W. Rost, S. A. Grigera, J. A. N. Bruin, R. S. Perry, D. Tian, S. Raghu, S. A. Kivelson, and A. P. Mackenzie, Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7, Proc. Natl. Acad. Sci. USA 108(40), 16549 (2011)
CrossRef ADS Google scholar
[39]
A. V. Silhanek, N. Harrison, C. D. Batista, M. Jaime, A. Lacerda, H. Amitsuka, and J. A. Mydosh, Quantum critical 5f electrons avoid singularities in U(Ru; Rh)2Si2, Phys. Rev. Lett. 95(2), 026403 (2005)
CrossRef ADS Google scholar
[40]
J. S. Kim, B. Andraka, G. Fraunberger, and G. R. Stewart, Specific heat in a magnetic field: A probe of the magnetic ground-state properties of heavy-fermion Ce(Ru2−xRhx)Si22−yGey, Phys. Rev. B 41(1), 541 (1990)
CrossRef ADS Google scholar
[41]
V. R. Shaginyan, K. G. Popov, V. A. Stephanovich, V. I. Fomichev, and E. V. Kirichenko, High magnetic fields thermodynamics of heavy fermion metal YbRh2Si2, Europhys. Lett. 93(1), 17008 (2011)
CrossRef ADS Google scholar
[42]
P. Gegenwart, Y. Tokiwa, T. Westerkamp, F. Weickert, J. Custers, J. Ferstl, C. Krellner, C. Geibel, P. Kerschl, K-H. Müller, and F. Steglich, High-field phase diagram of the heavy-fermion metal YbRh2Si2, New J. Phys. 8(9), 171 (2006)
CrossRef ADS Google scholar
[43]
H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
CrossRef ADS Google scholar
[44]
P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13(35), R723 (2001)
CrossRef ADS Google scholar
[45]
J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, C. Pépin, and P. Coleman, The breakup of heavy electrons at a quantum critical point, Nature 424(6948), 524 (2003)
CrossRef ADS Google scholar
[46]
S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy fermion quantum critical point, Nature 432(7019), 881 (2004)
CrossRef ADS Google scholar
[47]
Y. Yang, Z. Fisk, H-O. Lee, J. D. Thompson, and D. Pines, Scaling the Kondo lattice, Nature 454(7204), 611 (2008)
CrossRef ADS Google scholar
[48]
Y. Yang and D. Pines, Universal behavior in heavyelectron materials, Phys. Rev. Lett. 100(9), 096404 (2008)
CrossRef ADS Google scholar
[49]
Y. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014)
CrossRef ADS Google scholar
[50]
P. Wölfle and E. Abrahams, Quasiparticles beyond the Fermi liquid and heavy fermion criticality, Phys. Rev. B 84(4), 041101(R) (2011)
[51]
E. Abrahams and P. Wölfle, Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition, Proc. Natl. Acad. Sci. USA 109(9), 3238 (2012)
CrossRef ADS Google scholar
[52]
Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, Quantum Criticality Without Tuning in the Mixed Valence Compound β-YbAlB4, Science 331(6015), 316 (2011)
CrossRef ADS Google scholar
[53]
T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji, Strange metal without magnetic criticality, Science 349(6247), 506 (2015)
CrossRef ADS Google scholar
[54]
K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori, K. Ishida, H. Takakura, and T. Ishimasa, Quantum critical state in a magnetic quasicrystal, Nat. Mater. 11(12), 1013 (2012)
CrossRef ADS Google scholar
[55]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, Common quantum phase transition in quasicrystals and heavy-fermion metals,Phys. Rev. B 87(24), 245122 (2013)
CrossRef ADS Google scholar
[56]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, V. A. Khodel, and M. V. Zverev, Topological basis for understanding the behavior of the heavy-fermion metal β-YbAlB4 under application of magnetic field and pressure, Phys. Rev. B 93(20), 205126 (2016)
CrossRef ADS Google scholar
[57]
K. S. Kim and C. Pépin, Thermopower as a signature of quantum criticality in heavy fermions, Phys. Rev. B 81(20), 205108 (2010)
CrossRef ADS Google scholar
[58]
K. S. Kim and C. Pépin, Thermopower as a fingerprint of the Kondo breakdown quantum critical point, Phys. Rev. B 83(7), 073104 (2011)
CrossRef ADS Google scholar
[59]
K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zerotemperature limit, J. Phys.: Condens. Matter 16(28), 5187 (2004)
CrossRef ADS Google scholar
[60]
K. Miyake and H. Kohno, Theory of quasi-universal ratio of Seebeck coefficient to specific heat in zerotemperature limit in correlated metals, J. Phys. Soc. Jpn. 74(1), 254 (2005)
CrossRef ADS Google scholar
[61]
V. ZlatićR. Monnier, J. K. Freericks, and K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems, Phys. Rev. B 76(8), 085122 (2007)
CrossRef ADS Google scholar
[62]
S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, and F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2, Phys. Rev. Lett. 104(9), 096401 (2010)
CrossRef ADS Google scholar
[63]
S. Friedemann, S. Wirth, S. Kirchner, Q. Si, S. Hartmann, C. Krellner, C. Geibel, T. Westerkamp, M. Brando, and F. Steglich, Break up of heavy fermions at an antiferromagnetic instability, J. Phys. Soc. Jpn. 80(10 Suppl.A), SA002 (2011)
CrossRef ADS Google scholar
[64]
P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89(5), 056402 (2002)
CrossRef ADS Google scholar
[65]
A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Critical behavior of a strongly interacting 2D electron system, Phys. Rev. Lett. 109(9), 096405 (2012)
CrossRef ADS Google scholar
[66]
Y. Machida, K. Tomokuni, C. Ogura, K. Izawa, K. Kuga, S. Nakatsuji, G. Lapertot, G. Knebel, J. P. Brison, and J. Flouquet, Thermoelectric response near a quantum critical point of YbAlB4 and YbRh2Si2: A comparative study, Phys. Rev. Lett. 109(15), 156405 (2012)
CrossRef ADS Google scholar
[67]
V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, J. W. Clark, and V. A. Khodel, Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2, Front. Phys. 11(2), 117102 (2016)
CrossRef ADS Google scholar
[68]
P. Limelette, W. Saulquin, H. Muguerra, and D. Grebille, From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide, Phys. Rev. B 81(11), 115113 (2010)
CrossRef ADS Google scholar
[69]
T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Fractionalized excitations in the spin-liquid state of a kagomelattice antiferromagnet, Nature 492(7429), 406 (2012)
CrossRef ADS Google scholar
[70]
P. Mendels and F. Bert, Quantum kagome antiferromagnet ZnCu3(OH)6Cl2, J. Phys. Soc. Jpn. 79(1), 011001 (2010)
CrossRef ADS Google scholar
[71]
D. Green, L. Santos, and C. Chamon, Isolated flat bands and spin-1 conical bands in two-dimensional lattices, Phys. Rev. B 82(7), 075104 (2010)
CrossRef ADS Google scholar
[72]
T. H. Han, S. Chu, and Y. S. Lee, Refining the spin hamiltonian in the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2 using single crystals, Phys. Rev. Lett. 108(15), 157202 (2012)
CrossRef ADS Google scholar
[73]
M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J. Sanchez-Benitez, and A. Harrison, Magnetic ground state of an experimental S= 1/2 kagome antiferromagnet, Phys. Rev. Lett. 100(15), 157205 (2008)
CrossRef ADS Google scholar
[74]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Stephanovich, Identification of strongly correlated spin liquid in herbertsmithite, Europhys. Lett. 97(5), 56001 (2012)
CrossRef ADS Google scholar
[75]
V. R. Shaginyan, A. Z. Msezane, and K. G. Popov, Thermodynamic properties of the kagome lattice in herbertsmithite, Phys. Rev. B 84(6), 060401(R) (2011)
[76]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Khodel, Scaling in dynamic susceptibility of herbertsmithite and heavy-fermion metals, Phys. Lett. A 376(38–39), 2622 (2012)
CrossRef ADS Google scholar
[77]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Stephanovich, Magnetic-field-induced reentrance of fermi-liquid behavior and spin-lattice relaxation rates in YbCu5−xAux, Phys. Lett. A 373(41), 3783 (2009)
CrossRef ADS Google scholar
[78]
T. Imai, E. A. Nytko, B. M. Bartlett, M. P. Shores, and D. G. Nocera, 63Cu, 35Cl, and 1H NMR in the S= 1/2 kagome lattice ZnCu3(OH)6Cl2, Phys. Rev. Lett. 100(7), 077203 (2008)
CrossRef ADS Google scholar
[79]
P. Carretta, R. Pasero, M. Giovannini, and C. Baines, Magnetic-field-induced crossover from non- Fermi to Fermi liquid at the quantum critical point of YbCu5−xAux, Phys. Rev. B 79(2), 020401 (2009)
CrossRef ADS Google scholar
[80]
P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and Q. Si, Multiple energy scales at a quantum critical point, Science 315(5814), 969 (2007)
CrossRef ADS Google scholar
[81]
J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Qiu, D. G. Nocera, and Y. S. Lee, Dynamic scaling in the susceptibility of the spin-1/2 kagome lattice antiferromagnet herbertsmithite, Phys. Rev. Lett. 104(14), 147201 (2010)
CrossRef ADS Google scholar
[82]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, Heat transport in magnetic fields by quantum spin liquid in the organic insulators EtMe3Sb[Pd(dmit)2]2 and κ-(BEDTTTF)2Cu2(CN)3, Europhys. Lett. 103(6), 67006 (2013)
CrossRef ADS Google scholar
[83]
M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M. Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda, Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid, Science 328(5983), 1246 (2010)
CrossRef ADS Google scholar
[84]
M. Yamashita, T. Shibauchi, and Y. Matsuda, Thermaltransport studies of two-dimensional quantum spin liquids, ChemPhysChem 13(1), 74 (2012)
CrossRef ADS Google scholar
[85]
W. Knafo, S. Raymond, J. Flouquet, B. Fåk, M. A. Adams, P. Haen, F. Lapierre, S. Yates, and P. Lejay, Anomalous scaling behavior of the dynamical spin susceptibility of Ce0:925La0:075Ru2Si2, Phys. Rev. B 70(17), 174401 (2004)
CrossRef ADS Google scholar
[86]
B. Fåk, F. C. Coomer, A. Harrison, D. Visser, and M. E. Zhitomirsky, Spin-liquid behavior in a kagome antiferromagnet: Deuteronium jarosite, Europhys. Lett. 81(1), 17006 (2008)
CrossRef ADS Google scholar
[87]
V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Strongly correlated quantum spin liquid in herbertsmithite, Sov. Phys. JETP 116(5), 848 (2013)
CrossRef ADS Google scholar
[88]
D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53(20), 1951 (1984)
CrossRef ADS Google scholar
[89]
T. Fujiwara, Theory of Electronic Structure in Quasicrystals126, Springer Series in Solid-State Sciences, Berlin: Springer-Verlag, 1999
[90]
R. Widmer, P. Gröning, M. Feuerbacher, and O. Gröning, Experimental signatures of spiky local density of states in quasicrystals, Phys. Rev. B 79(10), 104202 (2009)
CrossRef ADS Google scholar
[91]
G. T. de Laissardiere, Spiky density of states in large complex Al-Mn phases, Zeitschrift für Kristallographie- Crystalline Materials 224(1–2), 123 (2009)
[92]
Y. Kono, T. Sakakibara, C. P. Aoyama, C. Hotta, M. M. Turnbull, C. P. Landee, and Y. Takano, Field-induced quantum criticality and universal temperature dependence of the magnetization of a spin-1/2 Heisenberg chain, Phys. Rev. Lett. 114(3), 037202 (2015)
CrossRef ADS Google scholar
[93]
V. A. Khodel, J. W. Clark, and M. V. Zverev, Superfluid phase transitions in dense neutron matter, Phys. Rev. Lett. 87(3), 031103 (2001)
CrossRef ADS Google scholar
[94]
V. R. Shaginyan, G. S. Japaridze, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Baryon asymmetry resulting from a quantum phase transition in the early universe, Europhys. Lett. 94(6), 69001 (2011)
CrossRef ADS Google scholar
[95]
V. R. Shaginyan, V. A. Stephanovich, K. G. Popov, and E. V. Kirichenko, Quasi-one-dimensional quantum spin liquid in the Cu(C4H4N2)(NO3)2 insulator, JETP Lett. 103(1), 30 (2016)
CrossRef ADS Google scholar
[96]
V. R. Shaginyan, V. A. Stephanovich, K. G. Popov, E. V. Kirichenko, and S. A. Artamonov, Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Ann. Phys. (Berlin), 528(6), 483 (2016)
CrossRef ADS Google scholar
[97]
S. Tomonaga, Remarks on Bloch’s method of sound waves applied to many-fermion problems, Prog. Theor. Phys. 5(4), 544 (1950)
CrossRef ADS Google scholar
[98]
J. M. Luttinger, An exactly soluble model of a manyfermion system, Math. Phys. 4(9), 1154 (1963)
CrossRef ADS Google scholar
[99]
F. D. M. Haldane, Luttinger liquid theory of onedimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas, J. Phys. C 14(19), 2585 (1981)
[100]
F. D. M. Haldane, General relation of correlation exponents and spectral properties of one-dimensional fermi systems: Application to the anisotropic S= 1/2 Heisenberg chain, Phys. Rev. Lett. 45(16), 1358 (1980)
CrossRef ADS Google scholar
[101]
A. V. Rozhkov, Fermionic quasiparticle representation of Tomonaga-Luttinger Hamiltonian, Eur. Phys. J. B 47(2), 193 (2005)
CrossRef ADS Google scholar
[102]
A. V. Rozhkov, One-dimensional fermions with neither Luttinger-liquid nor Fermi-liquid behavior, Phys. Rev. Lett. 112(10), 106403 (2014)
CrossRef ADS Google scholar
[103]
A. G. Lebed, Non-Fermi-liquid crossovers in a quasi onedimensional conductor in a tilted magnetic fleld, Phys. Rev. Lett. 115(15), 157001 (2015)
CrossRef ADS Google scholar
[104]
Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, T/B scaling of magnetization in the mixed valent compound β-YbAlB4, J. Phys. Conf. Ser. 391(1), 012041 (2012)
CrossRef ADS Google scholar
[105]
M. Jeong and H. M. Rónnow, Quantum critical scaling for a Heisenberg spin-1/2 chain around saturation, Phys. Rev. B 92(18), 180409(R) (2015)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1980 KB)

Accesses

Citations

Detail

Sections
Recommended

/