Laser-induced breakdown spectroscopy in Asia

Zhen-Zhen Wang (王珍珍), Yoshihiro Deguchi (出口祥啓), Zhen-Zhen Zhang (张臻臻), Zhe Wang (王哲), Xiao-Yan Zeng (曾晓雁), Jun-Jie Yan (严俊杰)

PDF(5652 KB)
PDF(5652 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 114213. DOI: 10.1007/s11467-016-0607-0
REVIEW ARTICLE
REVIEW ARTICLE

Laser-induced breakdown spectroscopy in Asia

Author information +
History +

Abstract

Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

Keywords

laser-induced breakdown spectroscopy (LIBS) / quantitative analysis / signal enhancement / applications / challenges

Cite this article

Download citation ▾
Zhen-Zhen Wang (王珍珍), Yoshihiro Deguchi (出口祥啓), Zhen-Zhen Zhang (张臻臻), Zhe Wang (王哲), Xiao-Yan Zeng (曾晓雁), Jun-Jie Yan (严俊杰). Laser-induced breakdown spectroscopy in Asia. Front. Phys., 2016, 11(6): 114213 https://doi.org/10.1007/s11467-016-0607-0

References

[1]
A. W. Miziolek, V. Palleschi, and I. Schechter, Laser- Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge: Cambridge University Press, 2006
CrossRef ADS Google scholar
[2]
F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16, 59 (1962)
[3]
T. H. Maiman, Stimulated optical radiation in ruby, Nature 187(4736), 493 (1960)
CrossRef ADS Google scholar
[4]
D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis, in Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2006
[5]
Y. Deguchi, Industrial Applications of Laser Diagnostics, Taylor & Francis Group, CRC Press, 2011
CrossRef ADS Google scholar
[6]
G. Galbács, A critical review of recent progress in analytical laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 407(25), 7537 (2015)
CrossRef ADS Google scholar
[7]
D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma-particle interactions: stillchallenging issues within the analytical plasma community, Appl. Spectrosc. 64(12), 335A (2010)
CrossRef ADS Google scholar
[8]
D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)
CrossRef ADS Google scholar
[9]
L. J. Radziemski and D. A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, 2006
[10]
R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Springer, 2012
CrossRef ADS Google scholar
[11]
Z. Wang, F. Z. Dong, and W. D. Zhou, A rising force for the world-wide development of laser-induced breakdown spectroscopy, Plasma Sci. Technol. 17(8), 617 (2015)
CrossRef ADS Google scholar
[12]
F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
CrossRef ADS Google scholar
[13]
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef ADS Google scholar
[14]
J. Yu and R. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy(LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 2 (2012)
CrossRef ADS Google scholar
[15]
L. Zhang, S. Kashiwakura, and K. Wagatsuma, Emission characteristics of copper ionic lines from the 3d95s- 3d94p transition in a low-pressure laser-induced plasma, Key Eng. Mater. 508, 331 (2012)
CrossRef ADS Google scholar
[16]
X. H. Wang, S. D. Zhang, X. L. Cheng, E. Y. Zhu, W. Hang, and B. L. Huang, Ion kinetic energy distributions in laser-induced plasma, Spectrochim. Acta B 99, 101 (2014)
CrossRef ADS Google scholar
[17]
S. D. Zhang, X. H. Wang, M. H. He, Y. B. Jiang, B. C. Zhang, W. Hang, and B. L. Huang, Laser-induced plasma temperature, Spectrochim. Acta B 97, 13 (2014)
CrossRef ADS Google scholar
[18]
S. D. Zhang, B. C. Zhang, W. Hang, and B. L. Huang, Chemometrics and theoretical approaches for evaluation of matrix effect in laser ablation and ionization of metal samples, Spectrochim. Acta B 107, 17 (2015)
CrossRef ADS Google scholar
[19]
S. Hafeez, N. M. Shaikh, and M. A. Baig, Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd: YAG laser, Laser Part. Beams 26(01), 41 (2008)
CrossRef ADS Google scholar
[20]
N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd: YAG laser, Eur. Phys. J. D 44(2), 371 (2007)
CrossRef ADS Google scholar
[21]
N. M. Shaikh, S. Hafeez, B. Rashid, S. Mahmood, and M. A. Baig, Optical emission studies of the mercury plasma generated by the fundamental, second and third harmonics of a Nd:YAG laser, J. Phys. D 39(20), 4377 (2006)
CrossRef ADS Google scholar
[22]
N. M. Shaikh, B. Rashid, S. Hafeez, Y. Jamil, and M. A. Baig, Measurement of electron density and temperature of a laser-induced zinc plasma, J. Phys. D 39(7), 1384 (2006)
CrossRef ADS Google scholar
[23]
X. W. Li, W. F. Wei, J. Wu, S. L. Jia, and A. C. Qiu, Comparison of nanosecond laser produced brass plasmas under low and moderate pressure air, J. Phys. D 46(47), 475207 (2013)
CrossRef ADS Google scholar
[24]
X. W. Li, W. F. Wei, J. Wu, S. L. Jia, and A. C. Qiu, The Influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere, J. Appl. Phys. 113(24), 243304 (2013)
CrossRef ADS Google scholar
[25]
W. F. Wei, J. Wu, X. W. Li, S. L. Jia, and A. C. Qiu, Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy, J. Appl. Phys. 114(11), 113304 (2013)
CrossRef ADS Google scholar
[26]
J. Wu, X. W. Li, W. F. Wei, S. L. Jia, and A. C. Qiu, Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics, Phys. Plasmas 20(11), 113512 (2013)
CrossRef ADS Google scholar
[27]
J. Wu, W. F. Wei, X. W. Li, S. L. Jia, and A. C. Qiu, Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion, Appl. Phys. Lett. 102(16), 164104 (2013)
CrossRef ADS Google scholar
[28]
Y. Iida, Effects of atmosphere on laser vaporization and excitation processes of solid samples, Spectrochim. Acta B 45(12), 1353 (1990)
CrossRef ADS Google scholar
[29]
Y. Iida, Laser vaporization of solid samples into a hollow-cathode discharge for atomic emission spectrometry, Spectrochim. Acta B At. 45(4–5), 427 (1990)
[30]
N. Farid, S. Bashir, and K. Mahmood, Effect of ambient gas conditions on laser-induced copper plasma and surface morphology, Phys. Scr. 85(1), 015702 (2012)
CrossRef ADS Google scholar
[31]
H. M. Hou, Y. Li, Y. Tian, Z. H. Yu, and R. Zheng, Plasma condensation effect induced by ambient pressure in laser-induced breakdown spectroscopy, Appl. Phys. Express 7(3), 032402 (2014)
CrossRef ADS Google scholar
[32]
H. M. Hou, Y. Tian, Y. Li, and R. Zheng, Study of pressure effects on laser induced plasma in bulk seawater, J. Anal. At. Spectrom. 29(1), 169 (2014)
CrossRef ADS Google scholar
[33]
Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, and J. Sneddon, Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd: YAG laser ablation, Appl. Spectrosc. 51(7), 959 (1997)
CrossRef ADS Google scholar
[34]
S. H. Tavassoli, I. V. Cravetchi, and R. Fedosejevs, Spatial and temporal evolution of laser-generated microplasmas, IEEE Trans. Plasma Sci. 34(6), 2594 (2006)
CrossRef ADS Google scholar
[35]
F. Rezaei and S. H. Tavassoli, Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas,Spectrochim. Acta B 78, 29 (2012)
CrossRef ADS Google scholar
[36]
F. Rezaei and S. H. Tavassoli, Quantitative analysis of aluminum samples in He ambient gas at different pressures in a thick LIBS plasma, Appl. Phys. B 120(3), 563 (2015)
CrossRef ADS Google scholar
[37]
S. Sunku, E. N. Rao, M. K. Gundawar, S. P. Tewari, and S. V. Rao, Molecular formation dynamics of 5-nitro-2,4- dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro- 1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy, Spectrochim. Acta B 87, 121 (2013)
CrossRef ADS Google scholar
[38]
S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,Spectrochim. Acta B79–80, 31 (2013)
CrossRef ADS Google scholar
[39]
M. Ramli, N. Idris, K. Fukumoto, H. Niki, F. Sakan, T. Maruyama, K. H. Kurniawan, T. J. Lie, and K. Kagawa, Hydrogen analysis in solid samples by utilizing He metastable atoms induced by TEA CO2 laser plasma in He gas at 1 atm, Spectrochim. Acta B 62(12), 1379 (2007)
CrossRef ADS Google scholar
[40]
M. Ramli, N. Idris, H. Niki, K. H. Kurniawan, and K. Kagawa, New method of laser plasma spectroscopy for metal samples using metastable He atoms induced by transversely excited atmospheric-pressure CO2 laser in He gas at 1 atm, Jpn. J. Appl. Phys. 47(3), 1595 (2008)
CrossRef ADS Google scholar
[41]
Z. S. Lie, A. Khumaeni, K. Kurihara, K. H. Kurniawan, Y. I. Lee, K. I. Fukumoto, K. Kagawa, and H. Niki, Excitation mechanism of H, He, C, and F atoms in metal-assisted atmospheric helium gas plasma induced by transversely excited atmospheric-pressure CO2 laser bombardment, Jpn. J. Appl. Phys. 50, 122701 (2011)
[42]
N. Idris, K. Lahna, S. N. Abdulmadjid, M. Ramli, H. Suyanto, A. M. Marpaung, M. Pardede, E. Jobiliong, R. Hedwig, M. M. Suliyanti, Z. S. Lie, T. J. Lie, K. Kagawa, M. O. Tjia, and K. H. Kurniawan, Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement, J. Appl. Phys. 117(22), 223301 (2015)
CrossRef ADS Google scholar
[43]
Z. Z. Wang, Y. Deguchi, J. J. Yan, and J. P. Liu, Comparison of the detection characteristics of trace species using laser-induced breakdown spectroscopy and laser breakdown time-of-flight mass spectrometry, Sensors 15(3), 5982 (2015)
CrossRef ADS Google scholar
[44]
Z. Z. Wang, Y. Deguchi, M. Kuwahara, J. J. Yan, and J. P. Liu, Enhancement of laser-induced breakdown spectroscopy (LIBS) detection limit using a low-pressure and short-pulse laser-induced plasma process, Appl. Spectrosc. 67(11), 1242 (2013)
CrossRef ADS Google scholar
[45]
X. B. Zhang, Y. Deguchi, Z. Z. Wang, J. J. Yan, and J. P. Liu, Sensitive detection of iodine by low pressure and short pulse laser-induced breakdown spectroscopy (LIBS), J. Anal. At. Spectrom. 29(6), 1082 (2014)
CrossRef ADS Google scholar
[46]
X. B. Zhang, Y. Deguchi, and J. P. Liu, Numerical simulation of laser induced weakly ionized helium plasma process by lattice Boltzmann method, Jpn. J. Appl. Phys. 51(1S), 01AA04 (2012)
CrossRef ADS Google scholar
[47]
Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, C. Yang, Y. Y. Chen, Y. H. Zhang, and P. C. Han, Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy, Front. Phys. 7(6), 714 (2012)
CrossRef ADS Google scholar
[48]
S. N. Abdulmadjid, M. M. Suliyanti, K. H. Kurniawan, T. J. Lie, M. Pardede, R. Hedwig, K. Kagawa, and M. O. Tjia, An improved approach for hydrogen analysis in metal samples using single laser-induced gas plasma and target plasma at helium atmospheric pressure, Appl. Phys. B 82(1), 161 (2006)
CrossRef ADS Google scholar
[49]
R. Hedwig, Z. S. Lie, K. H. Kurniawan, A. N. Chumakov, K. Kagawa, and M. O. Tjia, Toward quantitative deuterium analysis with laser-induced breakdown spectroscopy using atmospheric-pressure helium gas, J. Appl. Phys. 107(2), 023301 (2010)
CrossRef ADS Google scholar
[50]
K. H. Kurniawan, T. J. Lie, M. M. Suliyanti, R. Hedwig, M. Pardede, M. Ramli, H. Niki, S. N. Abdulmadjid, N. Idris, K. Lahna, Y. Kusumoto, K. Kagawa, and M. O. Tjia, The role of He in enhancing the intensity and lifetime of H and D emissions from laser-induced atmospheric-pressure plasma, J. Appl. Phys. 105(10), 103303 (2009)
CrossRef ADS Google scholar
[51]
A. M. Marpaung, Z. S. Lie, H. Niki, K. Kagawa, K. I. Fukumoto, M. Ramli, S. N. Abdulmadjid, N. Idris, R. Hedwig, M. O. Tjia, M. Pardede, M. M. Suliyanti, E. Jobiliong, and K. H. Kurniawan, Deuterium analysis in zircaloy using ps laser-induced low pressure plasma, J. Appl. Phys. 110(6), 063301 (2011)
CrossRef ADS Google scholar
[52]
M. Pardede, T. J. Lie, K. H. Kurniawan, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, Crater effects on H and D emission from laser induced low-pressure helium plasma, J. Appl. Phys. 106(6), 063303 (2009)
CrossRef ADS Google scholar
[53]
M. Ramli, K. I. Fukumoto, H. Niki, S. N. Abdulmadjid, N. Idris, T. Maruyama, K. Kagawa, M. O. Tjia, M. Pardede, K. H. Kurniawan, R. Hedwig, Z. S. Lie, T. J. Lie, and D. P. Kurniawan, Quantitative hydrogen analysis of zircaloy-4 in laser-induced breakdown spectroscopy with ambient helium gas, Appl. Opt. 46(34), 8298 (2007)
CrossRef ADS Google scholar
[54]
R. Ahmed and M. A. Baig, A comparative study of single and double pulse laser induced breakdown spectroscopy, J. Appl. Phys. 106(3), 033307 (2009)
CrossRef ADS Google scholar
[55]
Z. S. Lie, M. O. Tjia, R. Hedwig, M. M. Suliyanti, S. N. Abdulmadjid, N. Idris, A. M. Marpaung, M. Pardede, E. Jobiliong, M. Ramli, H. Suyanto, K. Fukumoto, K. Kagawa, and K. H. Kurniawan, Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma, J. Appl. Phys. 113(5), 053301 (2013)
CrossRef ADS Google scholar
[56]
L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett. 98(13), 131501 (2011)
CrossRef ADS Google scholar
[57]
L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)
CrossRef ADS Google scholar
[58]
L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express 19(15), 14067 (2011)
CrossRef ADS Google scholar
[59]
L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)
CrossRef ADS Google scholar
[60]
M. Oba, Y. Maruyama, K. Akaoka, M. Miyabe, and I. Wakaida, Double-pulse LIBS of gadolinium oxide ablated by femto- and nano-second laser pulses, Appl. Phys, A 101(3), 545 (2010)
CrossRef ADS Google scholar
[61]
D. X. Sun, M. G. Su, and C. Z. Dong, Emission signal enhancement and plasma diagnostics using collinear double pulse for laser-induced breakdown spectroscopy of aluminum alloys, Eur. Phys. J. Appl. Phys. 61(3), 30802 (2013)
CrossRef ADS Google scholar
[62]
S. Y. Chan and N. H. Cheung, Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy, Anal. Chem. 72(9), 2087 (2000)
CrossRef ADS Google scholar
[63]
S. L. Liu and N. H. Cheung, Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms, Appl. Phys. Lett. 81(27), 5114 (2002)
CrossRef ADS Google scholar
[64]
S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy: Ambient gas effects, Spectrochim. Acta B 58(9), 1613 (2003)
CrossRef ADS Google scholar
[65]
W. L. Yip and N. H. Cheung, Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dye laser affect analytical performance, Spectrochim. Acta B 64(4), 315 (2009)
CrossRef ADS Google scholar
[66]
X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys. 7(6), 721 (2012)
CrossRef ADS Google scholar
[67]
W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)
CrossRef ADS Google scholar
[68]
W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom. 28(5), 702 (2013)
CrossRef ADS Google scholar
[69]
A. Khumaeni, T. Motonobu, A. Katsuaki, M. Masabumi, and W. Ikuo, Enhancement of LIBS emission using antenna-coupled microwave, Opt. Express 21(24), 29755 (2013)
CrossRef ADS Google scholar
[70]
L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B 64(3), 278 (2009)
CrossRef ADS Google scholar
[71]
B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)
CrossRef ADS Google scholar
[72]
B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 67(9), 1087 (2013)
CrossRef ADS Google scholar
[73]
J. Feng, Z. Wang, Z. Li, and W. D. Ni, Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters, Spectrochim. Acta B 65(7), 549 (2010)
CrossRef ADS Google scholar
[74]
L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)
CrossRef ADS Google scholar
[75]
Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)
CrossRef ADS Google scholar
[76]
X. W. Li, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 88, 180 (2013)
CrossRef ADS Google scholar
[77]
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
CrossRef ADS Google scholar
[78]
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
CrossRef ADS Google scholar
[79]
Z. Wang, J. Feng, and Z. Li, Reply to “Comment on ‘A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements”’ by Vincenzo Palleschi, J. Anal. At. Spectrom 26, 2302 (2011)
CrossRef ADS Google scholar
[80]
Z. Y. Hou, Z. Wang, S. L. Lui, T. B. Yuan, L. Z. Li, Z. Li, and W. D. Ni, Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom. 28(1), 107 (2013)
CrossRef ADS Google scholar
[81]
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)
CrossRef ADS Google scholar
[82]
J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
CrossRef ADS Google scholar
[83]
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
CrossRef ADS Google scholar
[84]
Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)
CrossRef ADS Google scholar
[85]
T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
CrossRef ADS Google scholar
[86]
T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
CrossRef ADS Google scholar
[87]
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)
CrossRef ADS Google scholar
[88]
A. Sarkar, V. Karki, S. K. Aggarwal, G. S. Maurya, R. Kumar, A. K. Rai, X. Mao, and R. E. Russo, Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy, Spectrochim. Acta B 108, 8 (2015)
CrossRef ADS Google scholar
[89]
Y. Tian, Z. N. Wang, X. S. Han, H. M. Hou, and R. Zheng, Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laserinduced breakdown spectroscopy, Spectrochim. Acta B 102, 52 (2014)
CrossRef ADS Google scholar
[90]
J. H. Yang, C. C. Yi, J. W. Xu, and X. H. Ma, Laserinduced breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)
CrossRef ADS Google scholar
[91]
L. X. Sun and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta 79(2), 388 (2009)
CrossRef ADS Google scholar
[92]
T. Takahashi, B. Thornton, K. Ohki, and T. Sakka, Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation, Spectrochim. Acta B 111, 8 (2015)
CrossRef ADS Google scholar
[93]
M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)
CrossRef ADS Google scholar
[94]
S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)
CrossRef ADS Google scholar
[95]
S. C. Yao, J. D. Lu, J. Li, K. Chen, J. Y. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom. 25(11), 1733 (2010)
CrossRef ADS Google scholar
[96]
S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)
CrossRef ADS Google scholar
[97]
J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: Correlation analysis with plasma-induced current versus continuum background, J. Anal. At. Spectrom. 20(1), 53 (2005)
CrossRef ADS Google scholar
[98]
T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt. 51(7), B22 (2012)
CrossRef ADS Google scholar
[99]
J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Y. Li, Effects of experimental parameters on elemental analysis of coal by laserinduced breakdown spectroscopy, Opt. Laser Technol. 41(8), 907 (2009)
CrossRef ADS Google scholar
[100]
L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)
CrossRef ADS Google scholar
[101]
Z. Z. Wang, Y. Deguchi, H. Watanabe, R. Kurose, J. J. Yan, and J. P. Liu, Improvement on quantitative measurement of fly ash contents using laser-induced breakdown spectroscopy, J. Flow Control Meas. Visualization 3(1), 10 (2015)
[102]
Z. Z. Wang, Y. Deguchi, M. Kuwahara, T. Taira, X. B. Zhang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 130 (2013)
CrossRef ADS Google scholar
[103]
Z. Z. Wang, Y. Deguchi, M. Kuwahara, X. B. Zhang, J. J. Yan, and J. P. Liu, Sensitive measurement of trace mercury using low pressure laser-induced plasma, Jpn. J. Appl. Phys. 52(11S), 11NC05 (2013)
CrossRef ADS Google scholar
[104]
R. Yoshiie, Y. Yamamoto, S. Uemiya, S. Kambara, and H. Moritomi, Simple and rapid analysis of heavy metals in sub-micron particulates in flue gas, Powder Technol. 180(1–2), 135 (2008)
CrossRef ADS Google scholar
[105]
A. Khumaeni, K. Kurihara, Z. S. Lie, K. Kagawa, and Y. I. Lee, Analysis of sodium aerosol using transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy, Curr. Appl. Phys. 14(3), 451 (2014)
CrossRef ADS Google scholar
[106]
H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution, Opt. Express 22(20), 24478 (2014)
CrossRef ADS Google scholar
[107]
S. Eto, J. Tani, K. Shirai, and T. Fujii, Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 74 (2013)
CrossRef ADS Google scholar
[108]
R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak, Spectrochim. Acta B 87, 147 (2013)
CrossRef ADS Google scholar
[109]
R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater. 438, S1168 (2013)
CrossRef ADS Google scholar
[110]
R. Hai, X. W. Wu, Y. Xin, P. Liu, D. Wu, H. B. Ding, Y. Zhou, L. Z. Cai, and L. W. Yan, Use of dual-pulse laserinduced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater. 447(1–3), 9 (2014)
CrossRef ADS Google scholar
[111]
Q. Xiao, A. Huber, G. Sergienko, B. Schweer, P. Mertens, A. Kubina, V. Philipps, and H. Ding, Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des. 88(9-10), 1813 (2013)
CrossRef ADS Google scholar
[112]
S. J. Qiao, Y. Ding, D. Tian, L. Yao, and G. Yang, A review of laser-induced breakdown spectroscopy for analysis of geological materials, Appl. Spectrosc. Rev. 50(1), 1 (2015)
CrossRef ADS Google scholar
[113]
T. Hussain, and M. A. Gondal, Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis, J. Phys. Conf. Ser. 439, 012050 (2013)
CrossRef ADS Google scholar
[114]
L. W. Sheng, T. L. Zhang, G. H. Niu, K. Wang, H. S. Tang, Y. X. Duan, and H. Li, Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), J. Anal. At. Spectrom. 30(2), 453 (2015)
CrossRef ADS Google scholar
[115]
T. Kim, C. T. Lin, and Y. Yoon, Compositional mapping by laser-induced breakdown spectroscopy, J. Phys. Chem. B 102(22), 4284 (1998)
CrossRef ADS Google scholar
[116]
C. M. Li, Z. M. Zou, X. Y. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Quantitative analysis of phosphorus in steel using laser-induced breakdown spectroscopy in air atmosphere, J. Anal. At. Spectrom. 29(8), 1432 (2014)
CrossRef ADS Google scholar
[117]
S. Kashiwakura and K. Wagatsuma, Rapid sorting of stainless steels by open-air laser-induced breakdown spectroscopy with detecting chromium, nickel, and molybdenum, ISIJ Int. 55(11), 2391 (2015)
CrossRef ADS Google scholar
[118]
S. Kashiwakura, and K. Wagatsuma, Characteristics of the calibration curves of copper for the rapid sorting of steel scrap by means of laser-induced breakdown spectroscopy under ambient air atmospheres, Anal. Sci. 29(12), 1159 (2013)
CrossRef ADS Google scholar
[119]
Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)
CrossRef ADS Google scholar
[120]
T. L. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. S. Tang, X. F. Yang, and H. Li, Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods, J. Anal. At. Spectrom. 30(2), 368 (2015)
CrossRef ADS Google scholar
[121]
S. C. Yao, M. R. Dong, J. D. Lu, J. Li, and X. Dong, Correlation between grade of pearlite spheroidization and laser induced spectra, Laser Phys. 23(12), 125702 (2013)
CrossRef ADS Google scholar
[122]
S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases, Appl. Surf. Sci. 257(7), 3103 (2011)
CrossRef ADS Google scholar
[123]
J. Li, J. D. Lu, Y. Dai, M. R. Dong, W. L. Zhong, and S. C. Yao, Correlation between aging grade of T91 steel and spectral characteristics of the laser-induced plasma, Appl. Surf. Sci. 346, 302 (2015)
CrossRef ADS Google scholar
[124]
K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B 65(5), 420 (2010)
CrossRef ADS Google scholar
[125]
X. F. Li, W. D. Zhou, K. X. Li, H. G. Qian, and Z. J. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun. 285(1), 54 (2012)
CrossRef ADS Google scholar
[126]
K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom. 25(9), 1475 (2010)
CrossRef ADS Google scholar
[127]
W. A. Farooq, W. Tawfik, F. N. Al-Mutairi, and Z. A. Alahmed, Qualitative analysis and plasma characteristics of soil from a desert area using LIBS technique, J. Opt. Soc. Korea 17(6), 548 (2013)
CrossRef ADS Google scholar
[128]
G. C. He, D. X. Sun, M. G. Su, and C. Z. Dong, A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique, Eur. Phys. J. Appl. Phys. 55(3), 30701 (2011)
CrossRef ADS Google scholar
[129]
T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses, Opt. Lett. 31(23), 3456 (2006)
CrossRef ADS Google scholar
[130]
M. M. Suliyanti, M. Pardede, T. J. Lie, K. H. Kurniawan, A. Khumaeni, K. Kagawa, M. O. Tjia, and Y. I. Lee, Direct powder analysis by laser-induced breakdown spectroscopy utilizing laser-controlled dust production in a small chamber, J. Korean Phys. Soc. 58(5), 1129 (2011)
CrossRef ADS Google scholar
[131]
L. Huang, M. Y. Yao, Y. Xu, and M. H. Liu, Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models, Appl. Phys. B 111(1), 45 (2013)
CrossRef ADS Google scholar
[132]
M. Y. Yao, J. L. Lin, M. H. Liu, and Y. Xu, Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy, Appl. Opt. 51(10), 1552 (2012)
CrossRef ADS Google scholar
[133]
H. Oguchi, T. Sakka, and Y. H. Ogata, Effects of pulse duration upon the plume formation by the laser ablation of Cu in water, J. Appl. Phys. 102(2), 023306 (2007)
CrossRef ADS Google scholar
[134]
T. Sakka, S. Masai, K. Fukami, and Y. H. Ogata, Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid, Spectrochim. Acta B 64(10), 981 (2009)
CrossRef ADS Google scholar
[135]
T. Sakka, A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, and B. Thornton, Effects of pulse width on nascent laser-induced bubbles for underwater laserinduced breakdown spectroscopy, Spectrochim. Acta B 97, 94 (2014)
CrossRef ADS Google scholar
[136]
A. Matsumoto, A. Tamura, K. Fukami, Y. H. Ogata, and T. Sakka, Two-dimensional space-resolved emission spectroscopy of laser ablation plasma in water, J. Appl. Phys. 113(5), 053302 (2013)
CrossRef ADS Google scholar
[137]
A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water, Appl. Phys. A 112(1), 209 (2013)
CrossRef ADS Google scholar
[138]
K. H. Kurniawan, M. Pardede, R. Hedwig, S. N. Abdulmadjid, K. Lahna, N. Idris, E. Jobiliong, H. Suyanto, M. M. Suliyanti, M. O. Tjia, T. J. Lie, Z. S. Lie, D. P. Kurniawan, and K. Kagawa, Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas, Appl. Opt. 54(25), 7592 (2015)
CrossRef ADS Google scholar
[139]
Z. J. Chen, H. K. Li, F. Zhao, and R. H. Li, Ultrasensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface, J. Anal. At. Spectrom. 23(6), 871 (2008)
CrossRef ADS Google scholar
[140]
Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B 63(1), 64 (2008)
CrossRef ADS Google scholar
[141]
D. H. Zhu, J. P. Chen, J. Lu, and X. W. Ni, Laserinduced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,Anal. Methods 4(3), 819 (2012)
CrossRef ADS Google scholar
[142]
Q. Y. Lin, Z. M. Wei, M. J. Xu, S. Wang, G. H. Niu, K. P. Liu, Y. X. Duan, and J. Yang, Laser-induced breakdown spectroscopy for solution sample analysis using porous electrospun ultrafine fibers as a solid-phase support, RSC Advances 4(28), 14392 (2014)
CrossRef ADS Google scholar
[143]
L. J. Zheng, S. Niu, A. Q. Khan, S. Yuan, J. Yu, and H. P. Zeng, Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target, Spectrochim. Acta B 118, 66 (2016)
CrossRef ADS Google scholar
[144]
J. S. Xiu, S. L. Zhong, H. M. Hou, Y. Lu, and R. Zheng, Quantitative determination of manganese in aqueous solutions and seawater by laser-induced breakdown spectroscopy (LIBS) using paper substrates, Appl. Spectrosc. 68(9), 1039 (2014)
CrossRef ADS Google scholar
[145]
S. L. Zhong, R. Zheng, Y. Lu, K. Cheng, and J. S. Xiu, Ultrasonic nebulizer assisted LIBS: A promising metal elements detection method for aqueous sample analysis, Plasma Sci. Technol. 17(11), 979 (2015)
CrossRef ADS Google scholar
[146]
Z. Z. Wang, J. J. Yan, J. P. Liu, Y. Deguchi, S. Katsumori, and A. Ikutomo, Sensitive cesium measurement in liquid sample using low-pressure laser-induced breakdown spectroscopy, Spectrochim. Acta B 114, 74 (2015)
CrossRef ADS Google scholar
[147]
X. Y. Pu and N. H. Cheung, ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: Plume reheating with a second Nd:YAG laser pulse, Appl. Spectrosc. 57(5), 588 (2003)
CrossRef ADS Google scholar
[148]
X. Y. Pu, W. Y. Ma, and N. H. Cheung, Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy, Appl. Phys. Lett. 83(16), 3416 (2003)
CrossRef ADS Google scholar
[149]
T. Takahashi, B. Thornton, and T. Ura, Investigation of influence of hydrostatic pressure on double-pulse laserinduced breakdown spectroscopy for detection of Cu and Zn in submerged solids, Appl. Phys. Express 6(4), 042403 (2013)
CrossRef ADS Google scholar
[150]
B. Thornton, T. Sakka, T. Masamura, A. Tamura, T. Takahashi, and A. Matsumoto, Long-duration nanosecond single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures, Spectrochim. Acta B 97, 7 (2014)
CrossRef ADS Google scholar
[151]
B. Thornton, T. Sakka, T. Takahashi, A. Tamura, T. Masamura, and A. Matsumoto, Spectroscopic measurements of solids immersed in water at high pressure using a long-duration nanosecond laser pulse, Appl. Phys. Express 6(8), 082401 (2013)
CrossRef ADS Google scholar
[152]
B. Thornton, T. Takahashi, T. Ura, and T. Sakka, Cavity formation and material ablation for single-pulse laser-ablated solids immersed in water at high pressure, Appl. Phys. Express 5(10), 102402 (2012)
CrossRef ADS Google scholar
[153]
Y. L. Yu, W. D. Zhou, and X. J. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy, Opt. Commun. 333, 62 (2014)
CrossRef ADS Google scholar
[154]
M. Bahreini, Z. Hosseinimakarem, and S. H. Tavassoli, A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy, J. Appl. Phys. 112(5), 054701 (2012)
CrossRef ADS Google scholar
[155]
Z. Hosseinimakarem and S. H. Tavassoli, Analysis of human nails by laser-induced breakdown spectroscopy, J. Biomed. Opt. 16(5), 057002 (2011)
CrossRef ADS Google scholar
[156]
M. Bahreini, B. Ashrafkhani, and S. H. Tavassoli, Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails, J. Biomed. Opt. 18(10), 107006 (2013)
CrossRef ADS Google scholar
[157]
M. Gazmeh, M. Bahreini, and S. H. Tavassoli, Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis, Appl. Opt. 54(1), 123 (2015)
CrossRef ADS Google scholar
[158]
W. A. Farooq, W. Tawfik, S. B. Qasim, A. S. Aldwayyan, M. Atif, K. Ahmad, and M. S. Al-Salhi, Qualitative analysis of dental nano-composite restorative material using laser induced breakdown spectroscopy and EDS analysis, 2014 11th Annual High-capacity Optical Networks and Emerging/Enabling Technologies (HONET), 202
[159]
S. G. Kim and S. H. Jeong, Effects of temperaturedependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy, Lasers Med. Sci. 29(2), 637 (2014)
CrossRef ADS Google scholar
[160]
J. T. Han, D. X. Sun, M. G. Su, L. L. Peng, and C. Z. Dong, Quantitative analysis of metallic elements in tobacco and tobacco ash by calibration free laser-induced breakdown spectroscopy, Anal. Lett. 45(13), 1936 (2012)
CrossRef ADS Google scholar
[161]
M. Y. Yao, L. Huang, J. H. Zheng, S. Q. Fan, and M. H. Liu, Assessment of feasibility in determining of Cr in Gannan Navel Orange treated in controlled conditions by laser induced breakdown spectroscopy, Opt. Laser Technol. 52, 70 (2013)
CrossRef ADS Google scholar
[162]
Y. H. Lee, K. S. Ham, S. H. Han, J. H. Yoo, and S. H. Jeong, Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra, Spectrochim. Acta B 101, 57 (2014)
CrossRef ADS Google scholar
[163]
M. M. Tan, S. Cui, J. H. Yoo, S. H. Han, K. S. Ham, S. H. Nam, and Y. H. Lee, Feasibility of laser-induced breakdown spectroscopy (LIBS) for classification of sea salts, Appl. Spectrosc. 66(3), 262 (2012)
CrossRef ADS Google scholar
[164]
Z. S. Lie, M. Pardede, M. O. Tjia, K. H. Kurniawan, and K. Kagawa, Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars, J. Appl. Phys. 118(8), 083304 (2015)
CrossRef ADS Google scholar
[165]
S. Eto, T. Matsuo, T. Matsumura, T. Fujii, and M. Y. Tanaka, Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laserinduced breakdown spectroscopy, Spectrochim. Acta B 101, 245 (2014)
CrossRef ADS Google scholar
[166]
L. L. Peng, D. X. Sun, M. G. Su, J. T. Han, and C. Z. Dong, Rapid analysis on the heavy metal content of spent zinc–manganese batteries by laser-induced breakdown spectroscopy, Opt. Laser Technol. 44(8), 2469 (2012)
CrossRef ADS Google scholar
[167]
T. Nishi, T. Sakka, H. Oguchi, K. Fukami, and Y. H. Ogata, In situ electrode surface analysis by laserinduced breakdown spectroscopy, J. Electrochem. Soc. 155(11), F237 (2008)
CrossRef ADS Google scholar
[168]
W. Tawfik, W. A. Farooq, and Z. A. Alahmed, Damage profile of HDPE polymer using laser-induced plasma, J. Opt. Soc. Korea 18(1), 50 (2014)
CrossRef ADS Google scholar
[169]
Q. Q. Wang, K. Liu, H. Zhao, C. H. Ge, and Z. W. Huang, Detection of explosives with laser-induced breakdown spectroscopy, Front. Phys. 7(6), 701 (2012)
CrossRef ADS Google scholar
[170]
S. Tachibana, K. Kanai, S. Yoshida, K. Suzuki, and T. Sato, Combined effect of spatial and temporal variations of equivalence ratio on combustion instability in a low-swirl combustor, Proc. Combust. Inst. 35(3), 3299 (2015)
CrossRef ADS Google scholar
[171]
L. Zimmer and S. Tachibana, Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment, Proc. Combust. Inst. 31(1), 737 (2007)
CrossRef ADS Google scholar
[172]
Y. Y. Zhang, G. Xiong, S. Q. Li, Z. Z. Dong, S. G. Buckley, and S. D. Tse, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis, Combust. Flame 160(3), 725 (2013)
CrossRef ADS Google scholar
[173]
H. Nozari, F. Rezaei, and S. H. Tavassoli, Analysis of organic vapors with laser induced breakdown spectroscopy, Phys. Plasmas 22(9), 093302 (2015)
CrossRef ADS Google scholar
[174]
X. Wan and P. Wang, Remote quantitative analysis of minerals based on multispectral line-calibrated laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(10), 1132 (2014)
CrossRef ADS Google scholar
[175]
Q. D. Zeng, L. B. Guo, X. Y. Li, C. He, M. Shen, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron, J. Anal. At. Spectrom. 30(2), 403 (2015)
CrossRef ADS Google scholar
[176]
L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B 112, 40 (2015)
CrossRef ADS Google scholar
[177]
M. Kurihara, K. Ikeda, Y. Izawa, Y. Deguchi, and H. Tarui, Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy, Appl. Opt. 42(30), 6159 (2003)
CrossRef ADS Google scholar
[178]
M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy, Spectrochim. Acta B 57(4), 701 (2002)
CrossRef ADS Google scholar
[179]
W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)
CrossRef ADS Google scholar
[180]
L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)
CrossRef ADS Google scholar
[181]
L. Zhang, W. G. Ma, L. Dong, X. J. Yan, Z. Y. Hu, Z. X. Li, Y. Z. Zhang, L. Wang, W. B. Yin, and S. T. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)
CrossRef ADS Google scholar
[182]
M. Saeki, A. Iwanade, C. Ito, I. Wakaida, B. Thornton, T. Sakka, and H. Ohba, Development of a fibercoupled laser-induced breakdown spectroscopy instrument for analysis of underwater debris in a nuclear reactor core, J. Nucl. Sci. Technol. 51(7–8), 930 (2014)
CrossRef ADS Google scholar
[183]
C. Ito, H. Naito, A. Nishimura, H. Ohba, I. Wakaida, A. Sugiyama, and K. Chatani, Development of radiationresistant optical fiber for application to observation and laser spectroscopy under high radiation dose,J. Nucl. Sci. Technol. 51(7–8), 944 (2014)
CrossRef ADS Google scholar
[184]
Y. D. Gong, D. W. Choi, B. Y. Han, J. H. Yoo, S. H. Han, and Y. H. Lee, Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy, J. Nucl. Mater. 453(1–3), 8 (2014)
CrossRef ADS Google scholar
[185]
B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)
CrossRef ADS Google scholar
[186]
Y. Lu, Y. D. Li, Y. Li, Y. F. Wang, S. Wang, Z. M. Bao, and R. Zheng, Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy, Spectrochim. Acta B 110, 63 (2015)
CrossRef ADS Google scholar
[187]
F. Matroodi and S. H. Tavassoli, Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup, Appl. Phys. B 117(4), 1081 (2014)
CrossRef ADS Google scholar
[188]
Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express 21(13), 15974 (2013)
CrossRef ADS Google scholar
[189]
Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(S6), A1011 (2012)
CrossRef ADS Google scholar
[190]
B. Ashrafkhani, M. Bahreini, and S. H. Tavassoli, Repeatability improvement of laser-induced breakdown spectroscopy using an auto-focus system, Opt. Spectrosc. 118(5), 841 (2015)
CrossRef ADS Google scholar
[191]
Y. Ding, D. Tian, C. S. Li, Y. X. Duan, and G. Yang, Design and development of a miniature digital delay generator for laser-induced breakdown spectroscopy, Instrum. Sci. Technol. 43(1), 115 (2015)
CrossRef ADS Google scholar
[192]
S. Wang, M. J. Xu, Q. Y. Lin, G. M. Guo, Z. Zhang, D. Tian, and Y. X. Duan, A multifunctional sampling chamber for laser-induced breakdown spectroscopy for on-site elemental analysis, Instrum. Sci. Technol. 43(4), 485 (2015)
CrossRef ADS Google scholar
[193]
Y. Cai and N. H. Cheung, Photoacoustic monitoring of the mass removed in pulsed laser ablation, Microchem. J. 97(2), 109 (2011)
CrossRef ADS Google scholar
[194]
N. H. Cheung and E. S. Yeung, Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown, Appl. Spectrosc. 47(7), 882 (1993)
CrossRef ADS Google scholar
[195]
W. F. Ho, C. W. Ng, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength, Appl. Spectrosc. 51(1), 87 (1997)
CrossRef ADS Google scholar
[196]
K. M. Lo and N. H. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions, Appl. Spectrosc. 56(6), 682 (2002)
CrossRef ADS Google scholar
[197]
C. W. Ng, W. F. Ho, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties, Appl. Spectrosc. 51(7), 976 (1997)
CrossRef ADS Google scholar
[198]
N. H. Cheung and E. S. Yeung, Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow, Anal. Chem. 66(7), 929 (1994)
CrossRef ADS Google scholar
[199]
C. W. Ng and N. H. Cheung, Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: A feasibility demonstration, Anal. Chem. 72(1), 247 (2000)
CrossRef ADS Google scholar
[200]
Y. S. Liu, Z. C. Hu, S. Gao, D. Günther, J. Xu, C. G. Gao, and H. H. Chen, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard, Chem. Geol. 257(1–2), 34 (2008)
CrossRef ADS Google scholar
[201]
X. P. Xia, M. Sun, G. C. Zhao, and Y. Luo, LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance, Precambrian Res. 144(3–4), 199 (2006)
CrossRef ADS Google scholar
[202]
X. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, Laser ablation molecular isotopic spectrometry: Parameter influence on boron isotope measurements, Spectrochim. Acta B 66(8), 604 (2011)
CrossRef ADS Google scholar
[203]
R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, Laser ablation molecular isotopic spectrometry, Spectrochim. Acta B 66(2), 99 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(5652 KB)

Accesses

Citations

Detail

Sections
Recommended

/