Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data

Yang-Min Guo, Lian-Bo Guo, Jia-Ming Li, Hong-Di Liu, Zhi-Hao Zhu, Xiang-You Li, Yong-Feng Lu, Xiao-Yan Zeng

PDF(604 KB)
PDF(604 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 114212. DOI: 10.1007/s11467-016-0604-3
REVIEW ARTICLE
REVIEW ARTICLE

Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data

Author information +
History +

Abstract

Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics of spectral data are briefly introduced. Next, two aspects of research on and problems with data processing methods are described: i) the basic principles of data preprocessing methods are elaborated in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future development of data processing methods for LIBS is also proposed.

Keywords

laser-induced breakdown spectroscopy / data preprocessing / data analysis

Cite this article

Download citation ▾
Yang-Min Guo, Lian-Bo Guo, Jia-Ming Li, Hong-Di Liu, Zhi-Hao Zhu, Xiang-You Li, Yong-Feng Lu, Xiao-Yan Zeng. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data. Front. Phys., 2016, 11(5): 114212 https://doi.org/10.1007/s11467-016-0604-3

References

[1]
F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16(2), 59 (1962)
[2]
R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry—Applications for production control and quality assurance in the steel industry, Spectrochim. Acta B 56(6), 637 (2001)
CrossRef ADS Google scholar
[3]
D. Díaz, D. W. Hahn, and A. Molina, Laser-induced breakdown spectroscopy (LIBS) for detection of ammonium nitrate in soils, in: SPIE Defense, Security, and Sensing, 2009, International Society for Optics and Photonics
[4]
R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains, Appl. Spectrosc. 64(7), 750 (2010)
CrossRef ADS Google scholar
[5]
V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 63(10), 1047 (2008)
CrossRef ADS Google scholar
[6]
S. Sreedhar, M. K. Gundawar, and S. Venugopal Rao, Laser induced breakdown spectroscopy for classification of high energy materials using elemental intensity ratios, Def. Sci. J. 64(4), 332 (2014)
CrossRef ADS Google scholar
[7]
A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration, Appl. Spectrosc. 54(3), 331 (2000)
CrossRef ADS Google scholar
[8]
D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)
CrossRef ADS Google scholar
[9]
R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors. 10(8), 7434 (2010)
CrossRef ADS Google scholar
[10]
G. Y. Hou, P. Wang and C. Z. Tong, Progress in laserinduced breakdown spectroscopy and its applications, Chinese Opt. 4, 009 (2013)
[11]
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef ADS Google scholar
[12]
P. K. Diwakar, S. S. Harilal, J. R. Freeman, and A. Hassanein, Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 65 (2013)
CrossRef ADS Google scholar
[13]
G. Cristoforetti, E. Tognoni, and L. A. Gizzi, Thermodynamic equilibrium states in laser-induced plasmas: From the general case to laser-induced breakdown spectroscopy plasmas, Spectrochim. Acta B 90, 1 (2013)
CrossRef ADS Google scholar
[14]
D. Prochazka, J. Kaiser, K. Novotny, and M. Galiova, Recent development of double pulse laser induced breakdown spectroscopy (DP-LIBS) setup, J. Biochem. Tech. 2(5), S116 (2014)
[15]
L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)
CrossRef ADS Google scholar
[16]
L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)
CrossRef ADS Google scholar
[17]
L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett. 98(13), 131501 (2011)
CrossRef ADS Google scholar
[18]
L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express 19(15), 14067 (2011)
CrossRef ADS Google scholar
[19]
Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, Uv fs–ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis, J. Anal. At. Spectrom 28(5), 743 (2013)
CrossRef ADS Google scholar
[20]
J. El Haddad, L. Canioni, and B. Bousquet, Good practices in LIBS analysis: Review and advices, Spectrochim. Acta B 101, 171 (2014)
CrossRef ADS Google scholar
[21]
Z. Wang, F. Z. Dong, and W. D. Zhou, A rising force for the world-wide development of laser-induced breakdown spectroscopy, Plasma Sci. and Technol. 17(8), 617 (2015)
CrossRef ADS Google scholar
[22]
T. Fujimoto, Plasma Spectroscopy, Vol. 123, Oxford University Press on Demand, 2004
CrossRef ADS Google scholar
[23]
A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy, Appl. Spectrosc. 50(9), 1175 (1996)
CrossRef ADS Google scholar
[24]
F. Bredice, F. O. Borges, H. Sobral, M. Villagran- Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements, Spectrochim. Acta B 61(12), 1294 (2006)
CrossRef ADS Google scholar
[25]
B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, A method for improving wavelet threshold denoising in laser-induced breakdown spectroscopy, Spectrochim. Acta B 107, 32 (2015)
CrossRef ADS Google scholar
[26]
M. Sabsabi and P. Cielo, Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization, Appl. Spectrosc. 49(4), 499 (1995)
CrossRef ADS Google scholar
[27]
B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)
CrossRef ADS Google scholar
[28]
L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B 64(3), 278 (2009)
CrossRef ADS Google scholar
[29]
B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 67(9), 1087 (2013)
CrossRef ADS Google scholar
[30]
L. X. Sun, and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta 79(2), 388 (2009)
CrossRef ADS Google scholar
[31]
Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)
CrossRef ADS Google scholar
[32]
L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)
CrossRef ADS Google scholar
[33]
Z. Y. Hou, Z. Wang, S. L. Lui, T. B. Yuan, L. Z. Li, Z. Li, and W. D. Ni, Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom. 28(1), 107 (2013)
CrossRef ADS Google scholar
[34]
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
CrossRef ADS Google scholar
[35]
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
CrossRef ADS Google scholar
[36]
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
CrossRef ADS Google scholar
[37]
X. Li, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laserinduced breakdown spectroscopy measurements, Spectrochim. Acta B 88, 180 (2013)
CrossRef ADS Google scholar
[38]
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)
CrossRef ADS Google scholar
[39]
Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)
CrossRef ADS Google scholar
[40]
T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
CrossRef ADS Google scholar
[41]
T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
CrossRef ADS Google scholar
[42]
J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A Nonlinearized Multivariate Dominant Factor-Based Partial Least Squares (PLS) Model for Coal Analysis by Using Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
CrossRef ADS Google scholar
[43]
L. W. Sheng, T. L. Zhang, G. H. Niu, K. Wang, H. S. Tang, Y. X. Duan, and H. Li, Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), J. Anal. At. Spectrom. 30(2), 453 (2015)
CrossRef ADS Google scholar
[44]
T. L. Zhang, L. Liang, K. Wang, H. S. Tang, X. F. Yang, Y. X. Duan, and H. Li, A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR), J. Anal. At. Spectrom. 29(12), 2323 (2014)
CrossRef ADS Google scholar
[45]
L. Liang, T. L. Zhang, K. Wang, H. S. Tang, X. F. Yang, X. Q. Zhu, Y. X. Duan, and H. Li, Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines, Appl. Opt. 53(4), 544 (2014)
CrossRef ADS Google scholar
[46]
X. Q. Zhu, T. Xu, Q. Y. Lin, L. Liang, G. H. Niu, H. J. Lai, M. J. Xu, X. Wang, H. Li, and Y. X. Duan, Advanced statistical analysis of laser-induced breakdown spectroscopy data to discriminate sedimentary rocks based on Czerny–Turner and Echelle spectrometers, Spectrochim. Acta B 93, 8 (2014)
CrossRef ADS Google scholar
[47]
M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)
CrossRef ADS Google scholar
[48]
S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom. 25(11), 1733 (2010)
CrossRef ADS Google scholar
[49]
S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)
CrossRef ADS Google scholar
[50]
S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)
CrossRef ADS Google scholar
[51]
J. H. In, C. K. Kim, S. H. Lee, H. J. Lee, and S. Jeong, Improvement of selenium analysis during laser-induced breakdown spectroscopy measurement of CuIn1−xGaxSe2 solar cell films by self-absorption corrected normalization, J. Anal. At. Spectrom. 28(8), 1327 (2013)
CrossRef ADS Google scholar
[52]
J. H. In, C. K. Kim, S. H. Lee, J. H. Choi, and S. Jeong, Rapid quantitative analysis of elemental composition and depth profile of Cu(In, Ga)Se2 thin solar cell film using laser-induced breakdown spectroscopy, Thin Solid Films 579, 89 (2015)
CrossRef ADS Google scholar
[53]
Y. Lee, K. S. Ham, S. H. Han, J. Yoo, and S. Jeong, Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laserinduced plasma emission spectra, Spectrochim. Acta B 101, 57 (2014)
CrossRef ADS Google scholar
[54]
M. Gazmeh, M. Bahreini, and S. H. Tavassoli, Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis, Appl. Opt. 54(1), 123 (2015)
CrossRef ADS Google scholar
[55]
M. Bahreini and S. H. Tavassoli, Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail, J. Lasers Med. Sci. 3(3), 127 (2012)
[56]
X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, Accuracy improvement of quantitative analysis in laserinduced breakdown spectroscopy using modified wavelet transform, Opt. Express 22(9), 10233 (2014)
CrossRef ADS Google scholar
[57]
L. Hu, N. J. Zhao, W. Q. Liu, L. Fang, D. H. Zhang, Y. Wang, D. S. Meng, Y. Yu, M. J. Ma, X. Xiao, Y. Wang, and J. G. Liu, Study on removing method of continuous background spectrum in libs of multi-element heavy metals in water, Chinese J. Lasers 41(7), 0715003 (2014)
CrossRef ADS Google scholar
[58]
Y. Li and R. E. Zheng, The symmetric zero-area conversion adaptive peak-seeking method research for LIBS/Raman spectra, Spectroscopy and Spectral Analysis 33(2), 438 (2013)
[59]
P. F. Chen, D. Tian, S. J. Qiao, and G. Yang, An automatic peak detection method for libs spectrum based on continuous wavelet transform, Spectroscopy and Spectral Analysis 34(7), 1969 (2014)
[60]
J. H. Yang, C. C. Yi, J. W. Xu, and X. H. Ma, Laserinduced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)
CrossRef ADS Google scholar
[61]
D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta B 57(2), 339 (2002)
CrossRef ADS Google scholar
[62]
Z. B. Ni, F. Z. Dong, X. L. Chen, J. G. Wang, W. G. He, and H. B. Fu, Research on algorithm for self-absorption correction based on multi-particles libs spectra, Spectroscopy and Spectral Analysis 34(9), 2523 (2014)
[63]
J. R. Cordeiro, M. I. V. Martinez, R. W. C. Li, A. P. Cardoso, L. C. Nunes, F. J. Krug, T. R. L. C. Paixão, C. S. Nomura, and J. Gruber, Identification of four wood species by an electronic nose and by LIBS, Int. J. Electrochem. 2012, 1 (2012)
CrossRef ADS Google scholar
[64]
F. C. Jr De Lucia and J. L. Gottfried, Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification, Spectrochim. Acta B 66(2), 122 (2011)
CrossRef ADS Google scholar
[65]
N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari, and M. Kumar Gundawar, Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability, Anal. Chem. 84(6), 2686 (2012)
CrossRef ADS Google scholar
[66]
G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, Fast identification of biominerals by means of stand-off laser‐induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks, Spectrochim. Acta B 73, 1 (2012)
CrossRef ADS Google scholar
[67]
K. Liu, Q. Q. Wang and H. Zhao, Differentiation of plastic with laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis 31(5), 1171 (2011)
[68]
Y. Yu, Z. Q. Hao, C. M. Li, L. B. Guo, K. H. Li, Q. D. Zeng, X. Y. Li, Z. Ren, and X. Y. Zeng, Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm, Acta Phys. Sinica 62(21), 215201–215201 (2013)
[69]
Y. Tian, Z. N. Wang, X. S. Han, H. M. Hou, and R. E. Zheng, Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laserinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 102, 52 (2014)
CrossRef ADS Google scholar
[70]
Q. Q. Wang, Z. W. Huang, K. Liu, W. J. Li, and J. X. Yan, Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model, Spectroscopy and Spectral Analysis 32(12), 3179 (2012)
[71]
A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999)
CrossRef ADS Google scholar
[72]
V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Analysis of trace elements in complex matrices (soil) by Laser Induced Breakdown Spectroscopy (LIBS), Anal. Methods 5(5), 1294 (2013)
CrossRef ADS Google scholar
[73]
V. Sturm, L. Peter, and R. Noll, Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet, Appl. Spectrosc. 54(9), 1275 (2000)
CrossRef ADS Google scholar
[74]
K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3315 (2011)
CrossRef ADS Google scholar
[75]
J. Amador-Hernández, L. E. García-Ayuso, J. M. Fernández-Romero, and M. D. Luque de Castro, Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry, J. Anal. At. Spectrom. 15(6), 587 (2000)
CrossRef ADS Google scholar
[76]
C. L. Wang. J. G. Liu, N. J. Zhao, M. J. Ma, Y. Wang, L. Hu, D. H. Zhang, Y. Yu, D. S. Meng, W. Zhang, J. Liu, Y. J. Zhang, and W. Q. Liu, Quantitative analysis of laser-induced breakdown spectroscopy of heavy metals in water based on support-vector-machine regression, Acta Opt. Sinica 3, 045 (2013)
[77]
E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system, Spectrochim. Acta B At. Spectrosc. 63(10), 1216 (2008)
CrossRef ADS Google scholar
[78]
J. H. Yang, C. C. Yi, J. W. Xu, and X. Ma, Laserinduced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)
CrossRef ADS Google scholar
[79]
J. Amador-Hernández, L. E. García-Ayuso, J. M. Fernández-Romero, and M. D. Luque de Castro, Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry, J. Anal. At. Spectrom. 15(6), 587 (2000)
CrossRef ADS Google scholar
[80]
H. Lin, Y. Mingyin, L. Jinlong, L. Muhua, and H. Xiuwen, Determination of Cadmium in Gannan Navel Orange using Laser-Induced Breakdown Spectroscopy Coupled with Partial Least Squares Calibration Model, J. Appl. Spectrosc. 80(6), 957 (2014)
CrossRef ADS Google scholar
[81]
X. H. Zou, Z. Q. Hao, R. X. Yi, L. B. Guo, M. Shen, X. Y. Li, Z. M. Wang, X. Y. Zeng, and Y. F. Lu, Quantitative analysis of soil by laser-induced breakdown spectroscopy using genetic algorithm-partial least squares, Chinese J. Anal. Chem. 43(2), 181 (2015)
[82]
C. L. Wang. J. G. Liu, N. J. Zhao, M. J. Ma, Y. Wang, L. Hu, D. H. Zhang, Y. Yu, D. S. Meng, W. Zhang, J. Liu, Y. J. Zhang, and W. Q. Liu, Comparative analysis of quantitative method on heavy metal detection in water with laser-induced breakdown spectroscopy, Acta Phys. Sinica 12, 050 (2013)
[83]
Q. Shi, G. H. Niu, Q. Y. Lin, T. Xu, F. J. Li, and Y. X. Duan, Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: comparison of support vector regression and partial least squares regression chemometric methods, J. Anal. At. Spectrom. 30(12), 2384 (2015)
CrossRef ADS Google scholar
[84]
T. L. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. S. Tang, X. F. Yang, and H. Li, Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods, J. Anal. At. Spectrom. 30(2), 368 (2015)
CrossRef ADS Google scholar
[85]
Sun Lanxiang, Yu Haibin, Cong Zhibo, and Xin Yong, Quantitative analysis of Mn and Si of steels by laserinduced breakdown spectroscopy combined with neural networks, Acta Opt. Sin. 30(9), 2757 (2010)
CrossRef ADS Google scholar
[86]
K. H. Li, L. B. Guo, C. M. Li, X. Y. Li, M. Shen, Z. Zheng, Y. Yu, R. F. Hao, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, and X. Y. Zeng, Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network, J. Anal. At. Spectrom. 30(7), 1623 (2015)
CrossRef ADS Google scholar
[87]
Q. M. Shen, W. D. Zhou, and K. X. Li, Quantative elemental analysis using laser induced breakdown spectroscopy and neuro-genetic approach, Chinese J. Lasers 38(3), 247 (2011)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(604 KB)

Accesses

Citations

Detail

Sections
Recommended

/