Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China
Yang Zhao (赵洋), Lei Zhang (张雷), Shu-Xia Zhao (赵书霞), Yu-Fang Li (李郁芳), Yao Gong (弓瑶), Lei Dong (董磊), Wei-Guang Ma (马维光), Wang-Bao Yin (尹王保), Shun-Chun Yao (姚顺春), Ji-Dong Lu (陆继东), Lian-Tuan Xiao (肖连团), Suo-Tang Jia (贾锁堂)
Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China
Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical spectroscopy technique. This review presents the main recent developments in China regarding the implementation of LIBS for coal analysis. The paper mainly focuses on the progress of the past few years in the fundamentals, data pretreatment, calibration model, and experimental issues of LIBS and its application to coal analysis. Many important domestic studies focusing on coal quality analysis have been conducted. For example, a proposed novel hybrid quantification model can provide more reproducible quantitative analytical results; the model obtained the average absolute errors (AREs) of 0.42%, 0.05%, 0.07%, and 0.17% for carbon, hydrogen, volatiles, and ash, respectively, and a heat value of 0.07 MJ/kg. Atomic/ionic emission lines and molecular bands, such as CN and C2, have been employed to generate more accurate analysis results, achieving an ARE of 0.26% and a 0.16% limit of detection (LOD) for the prediction of unburned carbon in fly ashes. Both laboratory and on-line LIBS apparatuses have been developed for field application in coal-fired power plants. We consider that both the accuracy and the repeatability of the elemental and proximate analysis of coal have increased significantly and further efforts will be devoted to realizing large-scale commercialization of coal quality analyzer in China.
Laser-induced breakdown spectroscopy (LIBS) / coal quality / elemental analysis / proximate analysis / calibration model
[1] |
Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(3), 722 (2016)
CrossRef
ADS
Google scholar
|
[2] |
S. C. Yao, Y. L. Shen, K. J. Yin, G. Pan, and J. D. Lu, Rapidly measuring unburned carbon in fly ash using molecular CN by laser-induced breakdown spectroscopy, Energy & Fuels 29, 1257 (2015)
CrossRef
ADS
Google scholar
|
[3] |
L. Zhang, Y. Gong, Y. F. Li, X. Wang, J. J. Fan, L. Dong, W. G. Ma, W. B. Yin, and S. T. Jia, Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy, Spectrochim. Acta B 113, 167 (2015)
CrossRef
ADS
Google scholar
|
[4] |
W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)
CrossRef
ADS
Google scholar
|
[5] |
L. Zhang, W. G. Ma, L. Dong, X. J. Yan, Z. Y. Hu, Z. X. Li, Y. Z. Zhang, L. Wang, W. B. Yin, and S. T. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)
CrossRef
ADS
Google scholar
|
[6] |
Z. Y. Hu, L. Zhang, W. B. Yin, W. G. Ma, L. Dong, and S. T. Jia, Application of laser-induced breakdown spectroscopy to coal-fired power plants and soil contaminants on-line monitoring, J. Atm. Envir. Opt. 8(1), 26 (2013)
|
[7] |
J. J. Fan, D. Huang, X. Wang, L. Zhang, W. G. Ma, L. Dong, W. B. Yin, and S. T. Jia, Research on the identification method of LTE condition in the laser-induced plasma, Spectrosc. Spect. Anal. 34(12), 3183 (2014)
|
[8] |
Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)
CrossRef
ADS
Google scholar
|
[9] |
J. P. Zheng, J. D. Lu, B. Zhang, M. R. Dong, S. C. Yao, W. Y. Lu, and X. Dong, Experimental study of laser-induced breakdown spectroscopy (LIBS) for direct analysis of coal particle flow, Appl. Spectrosc. 68(6), 672 (2014)
CrossRef
ADS
Google scholar
|
[10] |
S. C. Yao, J. C. Chen, J. D. Lu, Y. L. Shen, and G. Pan, Influence of C-Fe lines interference correction on laserinduced breakdown spectroscopy measurement of unburned carbon in fly ash, Spectrosc. Spect. Anal. 35(6), 1719 (2015)
|
[11] |
M. R. Dong, X. L. Mao, J. J. Gonzalez, J. D. Lu, and R. E. Russo, Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium, J. Anal. At. Spectrom. 27(12), 2066 (2012)
CrossRef
ADS
Google scholar
|
[12] |
M. Y. Chen, T. B. Yuan, Z. Y. Hou, Z. Wang, and Y. Wang, Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy, Spectrochim. Acta B 112, 23 (2015)
CrossRef
ADS
Google scholar
|
[13] |
L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)
CrossRef
ADS
Google scholar
|
[14] |
Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)
CrossRef
ADS
Google scholar
|
[15] |
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)
CrossRef
ADS
Google scholar
|
[16] |
Z. Y. Hu, L. Zhang, W. G. Ma, X. J. Yan, Z. X. Li, Y. Z. Zhang, L. Wang, L. Dong, W. B. Yin, and S. T. Jia, Analysis of software for identifying spectral line of laserinduced breakdown spectroscopy based on LabVIEW, Spectrosc. Spect. Anal. 32(3), 602 (2012)
|
[17] |
M. R. Dong, D. Oropeza, J. Chirinos, J. J. González, J. D. Lu, X. L. Mao, and R. E. Russo, Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry, Spectrochim. Acta B 109, 44 (2015)
CrossRef
ADS
Google scholar
|
[18] |
L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, Analysis of pulverized coal by laser-induced breakdown spectroscopy, Plasma Sci. Technol. 7(5), 3041 (2005)
CrossRef
ADS
Google scholar
|
[19] |
S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)
CrossRef
ADS
Google scholar
|
[20] |
M. R. Dong, J. D. Lu, S. C. Yao, Z. M. Zhong, J. Y. Li, and W. Y. Lu, Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N, Opt. Express 19(18), 17021 (2011)
CrossRef
ADS
Google scholar
|
[21] |
L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)
CrossRef
ADS
Google scholar
|
[22] |
S. C. Yao, J. L. Xu, K. J. Bai, and J. D. Lu, Improved measurement performance of inorganic elements in coal by laser-induced breakdown spectroscopy coupled with internal standardization, Plasma Sci. Technol. 17(11), 938 (2015)
CrossRef
ADS
Google scholar
|
[23] |
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
CrossRef
ADS
Google scholar
|
[24] |
Z. Wang, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
CrossRef
ADS
Google scholar
|
[25] |
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
CrossRef
ADS
Google scholar
|
[26] |
T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
CrossRef
ADS
Google scholar
|
[27] |
J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
CrossRef
ADS
Google scholar
|
[28] |
S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)
CrossRef
ADS
Google scholar
|
[29] |
T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
CrossRef
ADS
Google scholar
|
[30] |
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal by laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)
CrossRef
ADS
Google scholar
|
[31] |
M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)
CrossRef
ADS
Google scholar
|
[32] |
M. Gaft, E. Dvir, H. Modiano, and U. Schone, Laser induced breakdown spectroscopy machine for online ash analyses in coal, Spectrochim. Acta B 63(10), 1177 (2008)
CrossRef
ADS
Google scholar
|
[33] |
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, Wavelength dependence in the analysis of carbon content in coal by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy, Plasma Sci. Technol. 8(8), 621 (2015)
CrossRef
ADS
Google scholar
|
[34] |
X. W. Li, X. L. Mao, Z. Wang, and R. E. Russo, Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy using UV laser radiation, Plasma Sci. Technol. 17(11), 928 (2015)
CrossRef
ADS
Google scholar
|
[35] |
X. Wang, D. Huang, J. J. Fan, L. Zhang, W. G. Ma, L. Dong, W. B. Yin, and S. T. Jia, Research on locking of the output power of pulsed laser in laser-induced breakdown spectroscopy, Spectrosc. Spect. Anal. 34(9), 2342 (2014)
|
[36] |
X. Wang, L. Zhang, J. J. Fan, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, and S. T. Jia, Parameters optimization of laser-induced breakdown spectroscopy experimental setup for the case with beam expander, Plasma Sci. Technol. 17(11), 914 (2015)
CrossRef
ADS
Google scholar
|
[37] |
L. Zhang, W. G. Ma, X. J. Yan, Z. X. Li, Z. Y. Hu, Y. Z. Zhang, L. Wang, L. Dong, W. B. Yin, and S. T. Jia, Research on parameters optimization of laserinduced breakdown spectroscopy based experimental device, Spectrosc. Spect. Anal. 31(9), 2355 (2011)
|
[38] |
J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Li, Effects of experimental parameters on elemental analysis of coal by laserinduced breakdown spectroscopy, Opt. Laser Technol. 41(8), 907 (2009)
CrossRef
ADS
Google scholar
|
[39] |
Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(S6), A1011 (2012)
CrossRef
ADS
Google scholar
|
[40] |
Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express 21(13), 15974 (2013)
CrossRef
ADS
Google scholar
|
[41] |
Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy, Opt. Express 22(11), 12909 (2014)
CrossRef
ADS
Google scholar
|
[42] |
X. W. Li, H. L. Yin, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy, Spectrochim. Acta B 111, 102 (2015)
CrossRef
ADS
Google scholar
|
[43] |
T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt. 51(7), B22 (2012)
CrossRef
ADS
Google scholar
|
[44] |
M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, A comparison of multivariate libs and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane–air flames, Fuel 106(2), 318 (2013)
CrossRef
ADS
Google scholar
|
[45] |
D. Body, and B. L. Chadwick, Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system, Spectrochim. Acta B 56(6), 725 (2001)
CrossRef
ADS
Google scholar
|
[46] |
M. P. Mateo, G. Nicolas, and A. Yañez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations, Appl. Surf. Sci. 254(4), 868 (2007)
CrossRef
ADS
Google scholar
|
[47] |
F. J. Wallis, B. L. Chadwick, and R. J. S. Morrison, Analysis of lignite using laser-induced breakdown spectroscopy, Appl. Spectrosc. 54(8), 1231 (2000)
CrossRef
ADS
Google scholar
|
[48] |
T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant, Spectrochim. Acta B 65(8), 734 (2010)
CrossRef
ADS
Google scholar
|
[49] |
T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Characterization of coal fly ash components by laserinduced breakdown spectroscopy, Spectrochim. Acta B 64(10), 1093 (2009)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |