Anisotropic evolution of energy gap in Bi2212 superconductor

A. P. Durajski

PDF(11465 KB)
PDF(11465 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 117408. DOI: 10.1007/s11467-016-0595-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Anisotropic evolution of energy gap in Bi2212 superconductor

Author information +
History +

Abstract

We present a systematic analysis of the energy gap in underdoped Bi2212 superconductor as a function of temperature and hole doping level. Within the framework of the theoretical model containing the electron-phonon and electron-electron-phonon pairing mechanism, we reproduced the measurement results of modern ARPES experiments with very high accuracy. We showed that the energy-gap amplitude is very weakly dependent on the temperature but clearly dependent on the level of doping. The evidence for a non-zero energy gap above the critical temperature, referred to as a pseudogap, was also obtained.

Keywords

high-temperature superconductors / anisotropy / energy gap / Bi2212

Cite this article

Download citation ▾
A. P. Durajski. Anisotropic evolution of energy gap in Bi2212 superconductor. Front. Phys., 2016, 11(5): 117408 https://doi.org/10.1007/s11467-016-0595-0

References

[1]
T. Timusk and B. Statt, The pseudogap in hightemperature superconductors: An experimental survey, Rep. Prog. Phys. 62(1), 61 (1999)
CrossRef ADS Google scholar
[2]
Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
CrossRef ADS Google scholar
[3]
L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, and N. P. Ong, Diamagnetism and Cooper pairing above Tc in cuprates, Phys. Rev. B 81(5), 054510 (2010)
CrossRef ADS Google scholar
[4]
J. Tahir-Kheli and W. A. Goddard III, Origin of the pseudogap in high-temperature cuprate superconductors, J. Phys. Chem. Lett. 2, 2326 (2011)
CrossRef ADS Google scholar
[5]
C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani, Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x, Nature 468(7324), 677 (2010)
CrossRef ADS Google scholar
[6]
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
CrossRef ADS Google scholar
[7]
G. Zhao, The pairing mechanism of high-temperature superconductivity: Experimental constraints, Phys. Scr. 83(3), 038302 (2011)
CrossRef ADS Google scholar
[8]
B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518(7538), 179 (2015)
CrossRef ADS Google scholar
[9]
E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87(2), 457 (2015)
CrossRef ADS Google scholar
[10]
R. Szcześniak, The isotope coefficient of the pseudogap in high-superconductors, Phys. Lett. A 336(4–5), 402 (2005)
CrossRef ADS Google scholar
[11]
R. Szcześniak, The selected thermodynamic properties of the strong-coupled superconductors in the van Hove scenario, Solid State Commun. 138(7), 347 (2006)
CrossRef ADS Google scholar
[12]
W. Kumala and R. Gonczarek, Solutions of the energy gap equation for D-wave paired systems, Phys. Status Solidi B 242(5), 1075 (2005)
CrossRef ADS Google scholar
[13]
M. Gładysiewicz-Kudrawiec, R. Gonczarek, and M. Krzyzosiak, Thermodynamic properties of a high-Tc superconductor in the extended Van Hove Scenario, Physica B359–361, 572 (2005)
CrossRef ADS Google scholar
[14]
M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Applications of the confromal transformation method in studies of composed superconducting systems, Front. Phys. 11, 117407 (2016)
CrossRef ADS Google scholar
[15]
H. Y. Choi, C. M. Varma, and X. Zhou, Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES, Front. Phys. 6(4), 440 (2012)
CrossRef ADS Google scholar
[16]
P. Tarasewicz, The intra- and interband phonon-electron potentials in a two-band model of interacting lattice fermions, J. Supercond. Nov. Magn. 28(8), 2307 (2015)
CrossRef ADS Google scholar
[17]
P. Tarasewicz, Fermion quartets in a two-band model of superconductivity, Physica C 506, 12 (2014)
CrossRef ADS Google scholar
[18]
R. Szcześniak, Pairing mechanism for the high-Tc superconductivity: Symmetries and thermodynamic properties, PLoS ONE 7(4), e31873 (2012)
CrossRef ADS Google scholar
[19]
R. Szcześniak and A. P. Durajski, Anisotropy of the gap parameter in the hole-doped cuprates, Supercond. Sci. Technol. 27(12), 125004 (2014)
CrossRef ADS Google scholar
[20]
R. Szcześniak and A. P. Durajski, On the ratio of the energy gap amplitude to the critical temperature for cuprates, Acta Phys. Pol. A 126(4A), A92 (2014)
CrossRef ADS Google scholar
[21]
R. Szcześniak, M. W. Jarosik, and A. M. Duda, The correlation between the energy gap and the pseudogap temperature in cuprates: The YCBCZO and LSHCO Case, Adv. Condens. Matter Phys. 2015, 969564 (2015)
CrossRef ADS Google scholar
[22]
R. Szcześniak, A. P. Durajski, and A. M. Duda, Analysis of the high-temperature superconducting state in cuprates: The Eliashberg approach, arXiv: 1503.06932 (2015)
[23]
I. M. Vishik, W. S. Lee, R. H. He, M. Hashimoto, Z. Hussain, T. P. Devereaux, and Z. X. Shen, ARPES studies of cuprateFermiology: superconductivity, pseudogap and quasiparticle dynamics, New J. Phys. 12(10), 105008 (2010)
CrossRef ADS Google scholar
[24]
I. M. Vishik, M. Hashimoto, R. H. He, W. S. Lee, F. Schmitt, D. Lu, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, and Z. X. Shen, Phase competition in trisected superconducting dome, Proc. Natl. Acad. Sci. USA 109(45), 18332 (2012)
CrossRef ADS Google scholar
[25]
T. Tohyama and S. Maekawa, Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints, Supercond. Sci. Technol. 13(4), R17 (2000)
CrossRef ADS Google scholar
[26]
C. Kim, P. J. White, Z. X. Shen, T. Tohyama, Y. Shibata, S. Maekawa, B. O. Wells, Y. J. Kim, R. J. Birgeneau, and M. A. Kastner, Systematics of the photoemission spectral function of cuprates: Insulators and hole- and electron-doped superconductors, Phys. Rev. Lett. 80(19), 4245 (1998)
CrossRef ADS Google scholar
[27]
H. Fröhlich, On the theory of superconductivity: The one-dimensional case, Proc. R. Soc. Lond. A Math. Phys. Sci. 223(1154), 296 (1954)
CrossRef ADS Google scholar
[28]
R. Szcześniak and A. P. Durajski, The energy gap in the (Hg1xSnx)Ba2Ca2Cu3O8+y superconductor, J. Supercond. Nov. Magn. 27(6), 1363 (2014)
CrossRef ADS Google scholar
[29]
R. M. Dipasupil, M. Oda, N. Momono, and M. Ido, Energy gap evolution in the tunneling spectra of Bi2Sr2CaCu2O8+δ, J. Phys. Soc. Jpn. 71(6), 1535 (2002)
CrossRef ADS Google scholar
[30]
N. Miyakawa, J. F. Zasadzinski, L. Ozyuzer, P. Guptasarma, D. G. Hinks, C. Kendziora, and K. E. Gray, Predominantly superconducting origin of large energy gaps in underdoped Bi2Sr2CaCu2O8+δ from tunneling spectroscopy, Phys. Rev. Lett. 83(5), 1018 (1999)
CrossRef ADS Google scholar
[31]
L. Ozyuzer, J. Zasadzinski, K. Gray, D. Hinks, and N. Miyakawa, Probing the phase diagram of Bi2Sr2CaCu2O8+δ with tunneling spectroscopy, IEEE Trans. Appl. Supercond. 13(2), 893 (2003)
CrossRef ADS Google scholar
[32]
C. Renner, B. Revaz, J. Y. Genoud, K. Kadowaki, and O. Fischer, Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 80(1), 149 (1998)
CrossRef ADS Google scholar
[33]
M. Oda, K. Hoya, R. Kubota, C. Manabe, N. Momono, T. Nakano, and M. Ido, Strong pairing interactions in the underdoped region of Bi2Sr2CaCu2O8+σ, Physica C 281(2–3), 135 (1997)
CrossRef ADS Google scholar
[34]
H. Ding, J. Campuzano, M. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+x, J. Phys. Chem. Solids 59(10–12), 1888 (1998)
CrossRef ADS Google scholar
[35]
H. Raffy, V. Toma, C. Murrills, and Z. Z. Li, c-axis resistivity of Bi2Sr2CaCu2Oy thin films at various oxygen doping: Phase diagram and scaling law, Physica C460–462, 851 (2007)
[36]
M. Hashimoto, I. M. Vishik, R. H. He, T. P. Devereaux, and Z. X. Shen, Energy gaps in high-transitiontemperature cuprate superconductors, Nat. Phys. 10(7), 483(2014)
CrossRef ADS Google scholar
[37]
J. Zhao, U. Chatterjee, D. Ai, D. G. Hinks, H. Zheng, G. D. Gu, J. P. Castellan, S. Rosenkranz, H. Claus, M. R. Norman, M. Randeria, and J. C. Campuzano, Universal features in the photoemission spectroscopy of high-temperature superconductors, Proc. Natl. Acad. Sci. USA 110(44), 17774 (2013)
CrossRef ADS Google scholar
[38]
S. Hüfner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Two gaps make a high-temperature superconductor? Rep. Prog. Phys. 71(6), 062501 (2008)
CrossRef ADS Google scholar
[39]
R. Szcześniak and A. P. Durajski, Description of hightemperature superconducting state in BSLCO compound, J. Supercond. Nov. Magn. 28(1), 19 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(11465 KB)

Accesses

Citations

Detail

Sections
Recommended

/