Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials

Ting-Hua Li (李廷华), Dong-Lai Zhu(朱东来), Fu-Chun Mao(毛福春), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Shou-Bo Li

PDF(506 KB)
PDF(506 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 110503. DOI: 10.1007/s11467-016-0575-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials

Author information +
History +

Abstract

Transformation thermodynamics as a major extension of transformation optics has recently received considerable attention. In this paper, we present two-dimensional (2D) and three-dimensional (3D) diamond-shaped transient thermal cloaks with non-singular homogeneous material parameters. The absence of singularity in the parameters results from the fact that the linear coordinate transformation is performed by expanding a line segment rather than a point into a region, while the mechanism behind the homogeneity is the homogeneous stretching and compression along orthogonal directions during the transformation. Although the derived parameters remain anisotropic, we further show that this can be circumvented by considering a layered structure composed of only four types of isotropic materials based on the effective medium theory. Numerical simulation results confirm the good performance of the proposed cloaks.

Keywords

transformation thermodynamics / metamaterials / thermal cloak / effective medium theory

Cite this article

Download citation ▾
Ting-Hua Li (李廷华), Dong-Lai Zhu(朱东来), Fu-Chun Mao(毛福春), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials. Front. Phys., 2016, 11(5): 110503 https://doi.org/10.1007/s11467-016-0575-4

References

[1]
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
CrossRef ADS Google scholar
[2]
U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
CrossRef ADS Google scholar
[3]
H. Y. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)
CrossRef ADS Google scholar
[4]
D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials, London: Springer-Verlag, 2015
[5]
W. Li, J. G. Guan, Z. G. Sun, W. Wang, and Q. J. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials, Opt. Express 17(26), 23410 (2009)
CrossRef ADS Google scholar
[6]
D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders, Front. Phys. 5(3), 319 (2010)
CrossRef ADS Google scholar
[7]
M. R. Forouzeshfard and M. Hosseini Farzad, Twin invisibility cloak at a distance and its illusory properties, Plasmonics 10(1), 125 (2015)
CrossRef ADS Google scholar
[8]
M. M. Sadeghi, H. Nadgaran, and H. Y. Chen, Perfect field concentrator using zero index metamaterials and perfect electric conductors, Front. Phys. 9(1), 90 (2014)
CrossRef ADS Google scholar
[9]
J. Yi, S. N. Burokur, G. P. Piau, and A. de Lustrac, Coherent beam control with an all-dielectric transformation optics based lens, Sci. Rep. 6, 18819 (2016)
CrossRef ADS Google scholar
[10]
F. Sun and S. L. He, Overlapping illusions by transformation optics without any negative refraction material, Sci. Rep. 6, 19130 (2016)
CrossRef ADS Google scholar
[11]
H. Y. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D Appl. Phys. 43(11), 113001 (2010)
CrossRef ADS Google scholar
[12]
M. Farhat, S. Guenneau, and S. Enoch, Ultrabroadband elastic cloaking in thin plates, Phys. Rev. Lett. 103(2), 024301 (2009)
CrossRef ADS Google scholar
[13]
G. R. Mohammadi, A. G. Moghaddam, and R. Mohammadkhani, Coordinate transformations and matter waves cloaking, Phys. Lett. A 380(9–10), 1093 (2016)
CrossRef ADS Google scholar
[14]
W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, Linear transformation optics for plasmonics, J. Opt. Soc. Am. B 29(10), 2659 (2012)
CrossRef ADS Google scholar
[15]
L. W. Zeng and R. X. Song, Controlling chloride ions diffusion in concrete, Sci. Rep. 3, 3359 (2013)
CrossRef ADS Google scholar
[16]
U. Leonhardt, Applied physics: Cloaking of heat, Nature 498(7455), 440 (2013)
CrossRef ADS Google scholar
[17]
C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
CrossRef ADS Google scholar
[18]
G. X. Yu, Y. F. Lin, G. Q. Zhang, Z. Yu, L. L. Yu, and J. Su, Design of square-shaped heat flux cloaks and concentrators using method of coordinate transformation, Front. Phys. 6(1), 70 (2011)
CrossRef ADS Google scholar
[19]
T. Z. Yang, L. J. Huang, F. Chen, and W. K. Xu, Heat flux and temperature field cloaks for arbitrarily shaped objects, J. Phys. D Appl. Phys. 46(30), 305102 (2013)
CrossRef ADS Google scholar
[20]
F. C. Mao, T. H. Li, M. Huang, J. J. Yang, and J. C. Chen, Research and design of thermal cloak in arbitary shape, Acta Physica Sinica 63(1), 014401 (2014) (in Chinese)
[21]
T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, Homogeneous thermal cloak with constant conductivity and tunable heat localization, Sci. Rep. 3, 1593 (2013)
CrossRef ADS Google scholar
[22]
S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)
CrossRef ADS Google scholar
[23]
E. H. Ooi and V. Popov, Transformation thermodynamics for heat flux management based on segmented thermal cloaks, Eur. Phys. J. Appl. Phys. 63(1), 10903 (2013)
CrossRef ADS Google scholar
[24]
S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: Cloaking and concentrating heat flux, Opt. Express 20(7), 8207 (2012)
CrossRef ADS Google scholar
[25]
R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Experiments on transformation thermodynamics: Molding the flow of heat, Phys. Rev. Lett. 110(19), 195901 (2013)
CrossRef ADS Google scholar
[26]
T. C. Han, X. Bai, J. T. L. Thong, B. W. Li, and C. W. Qiu, Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater. 26(11), 1731 (2014)
CrossRef ADS Google scholar
[27]
T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)
CrossRef ADS Google scholar
[28]
H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. L. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)
CrossRef ADS Google scholar
[29]
Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Mater. 5(11), e73 (2013)
CrossRef ADS Google scholar
[30]
X. He and L. Z. Wu, Design of two-dimensional open cloaks with finite material parameters for thermodynamics, Appl. Phys. Lett. 102(21), 211912 (2013)
CrossRef ADS Google scholar
[31]
Y. Gao and J. P. Huang, Unconventional thermal cloak hiding an object outside the cloak, Europhys. Lett. 104(4), 44001 (2013)
CrossRef ADS Google scholar
[32]
R. Hu, X. L. Wei, J. Y. Hu, and X. B. Luo, Local heating realization by reverse thermal cloak, Sci. Rep. 4, 3600 (2014)
CrossRef ADS Google scholar
[33]
D. M. Nguyen, H. Y. Xu, Y. M. Zhang, and B. L. Zhang, Active thermal cloak, Appl. Phys. Lett. 107(12), 121901 (2015)
CrossRef ADS Google scholar
[34]
S. Guenneau and C. Amra, Anisotropic conductivity rotates heat fluxes in transient regimes, Opt. Express 21(5), 6578 (2013)
CrossRef ADS Google scholar
[35]
T. C. Han, J. J. Zhao, T. Yuan, D. Y. Lei, B. W. Li, and C. W. Qiu, Theoretical realization of an ultra-efficient thermalenergy harvesting cell made of natural materials, Energy Environ. Sci. 6(12), 3537 (2013)
CrossRef ADS Google scholar
[36]
Y. C. Liu, F. Sun, and S. L. He, Novel thermal lens for remote heating/cooling designed with transformation optics, Opt. Express 24(6), 5683 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(506 KB)

Accesses

Citations

Detail

Sections
Recommended

/