Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials
Ting-Hua Li (李廷华), Dong-Lai Zhu(朱东来), Fu-Chun Mao(毛福春), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Shou-Bo Li
Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials
Transformation thermodynamics as a major extension of transformation optics has recently received considerable attention. In this paper, we present two-dimensional (2D) and three-dimensional (3D) diamond-shaped transient thermal cloaks with non-singular homogeneous material parameters. The absence of singularity in the parameters results from the fact that the linear coordinate transformation is performed by expanding a line segment rather than a point into a region, while the mechanism behind the homogeneity is the homogeneous stretching and compression along orthogonal directions during the transformation. Although the derived parameters remain anisotropic, we further show that this can be circumvented by considering a layered structure composed of only four types of isotropic materials based on the effective medium theory. Numerical simulation results confirm the good performance of the proposed cloaks.
transformation thermodynamics / metamaterials / thermal cloak / effective medium theory
[1] |
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
CrossRef
ADS
Google scholar
|
[2] |
U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
CrossRef
ADS
Google scholar
|
[3] |
H. Y. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)
CrossRef
ADS
Google scholar
|
[4] |
D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials, London: Springer-Verlag, 2015
|
[5] |
W. Li, J. G. Guan, Z. G. Sun, W. Wang, and Q. J. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials, Opt. Express 17(26), 23410 (2009)
CrossRef
ADS
Google scholar
|
[6] |
D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders, Front. Phys. 5(3), 319 (2010)
CrossRef
ADS
Google scholar
|
[7] |
M. R. Forouzeshfard and M. Hosseini Farzad, Twin invisibility cloak at a distance and its illusory properties, Plasmonics 10(1), 125 (2015)
CrossRef
ADS
Google scholar
|
[8] |
M. M. Sadeghi, H. Nadgaran, and H. Y. Chen, Perfect field concentrator using zero index metamaterials and perfect electric conductors, Front. Phys. 9(1), 90 (2014)
CrossRef
ADS
Google scholar
|
[9] |
J. Yi, S. N. Burokur, G. P. Piau, and A. de Lustrac, Coherent beam control with an all-dielectric transformation optics based lens, Sci. Rep. 6, 18819 (2016)
CrossRef
ADS
Google scholar
|
[10] |
F. Sun and S. L. He, Overlapping illusions by transformation optics without any negative refraction material, Sci. Rep. 6, 19130 (2016)
CrossRef
ADS
Google scholar
|
[11] |
H. Y. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D Appl. Phys. 43(11), 113001 (2010)
CrossRef
ADS
Google scholar
|
[12] |
M. Farhat, S. Guenneau, and S. Enoch, Ultrabroadband elastic cloaking in thin plates, Phys. Rev. Lett. 103(2), 024301 (2009)
CrossRef
ADS
Google scholar
|
[13] |
G. R. Mohammadi, A. G. Moghaddam, and R. Mohammadkhani, Coordinate transformations and matter waves cloaking, Phys. Lett. A 380(9–10), 1093 (2016)
CrossRef
ADS
Google scholar
|
[14] |
W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, Linear transformation optics for plasmonics, J. Opt. Soc. Am. B 29(10), 2659 (2012)
CrossRef
ADS
Google scholar
|
[15] |
L. W. Zeng and R. X. Song, Controlling chloride ions diffusion in concrete, Sci. Rep. 3, 3359 (2013)
CrossRef
ADS
Google scholar
|
[16] |
U. Leonhardt, Applied physics: Cloaking of heat, Nature 498(7455), 440 (2013)
CrossRef
ADS
Google scholar
|
[17] |
C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
CrossRef
ADS
Google scholar
|
[18] |
G. X. Yu, Y. F. Lin, G. Q. Zhang, Z. Yu, L. L. Yu, and J. Su, Design of square-shaped heat flux cloaks and concentrators using method of coordinate transformation, Front. Phys. 6(1), 70 (2011)
CrossRef
ADS
Google scholar
|
[19] |
T. Z. Yang, L. J. Huang, F. Chen, and W. K. Xu, Heat flux and temperature field cloaks for arbitrarily shaped objects, J. Phys. D Appl. Phys. 46(30), 305102 (2013)
CrossRef
ADS
Google scholar
|
[20] |
F. C. Mao, T. H. Li, M. Huang, J. J. Yang, and J. C. Chen, Research and design of thermal cloak in arbitary shape, Acta Physica Sinica 63(1), 014401 (2014) (in Chinese)
|
[21] |
T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, Homogeneous thermal cloak with constant conductivity and tunable heat localization, Sci. Rep. 3, 1593 (2013)
CrossRef
ADS
Google scholar
|
[22] |
S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)
CrossRef
ADS
Google scholar
|
[23] |
E. H. Ooi and V. Popov, Transformation thermodynamics for heat flux management based on segmented thermal cloaks, Eur. Phys. J. Appl. Phys. 63(1), 10903 (2013)
CrossRef
ADS
Google scholar
|
[24] |
S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: Cloaking and concentrating heat flux, Opt. Express 20(7), 8207 (2012)
CrossRef
ADS
Google scholar
|
[25] |
R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Experiments on transformation thermodynamics: Molding the flow of heat, Phys. Rev. Lett. 110(19), 195901 (2013)
CrossRef
ADS
Google scholar
|
[26] |
T. C. Han, X. Bai, J. T. L. Thong, B. W. Li, and C. W. Qiu, Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater. 26(11), 1731 (2014)
CrossRef
ADS
Google scholar
|
[27] |
T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)
CrossRef
ADS
Google scholar
|
[28] |
H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. L. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)
CrossRef
ADS
Google scholar
|
[29] |
Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Mater. 5(11), e73 (2013)
CrossRef
ADS
Google scholar
|
[30] |
X. He and L. Z. Wu, Design of two-dimensional open cloaks with finite material parameters for thermodynamics, Appl. Phys. Lett. 102(21), 211912 (2013)
CrossRef
ADS
Google scholar
|
[31] |
Y. Gao and J. P. Huang, Unconventional thermal cloak hiding an object outside the cloak, Europhys. Lett. 104(4), 44001 (2013)
CrossRef
ADS
Google scholar
|
[32] |
R. Hu, X. L. Wei, J. Y. Hu, and X. B. Luo, Local heating realization by reverse thermal cloak, Sci. Rep. 4, 3600 (2014)
CrossRef
ADS
Google scholar
|
[33] |
D. M. Nguyen, H. Y. Xu, Y. M. Zhang, and B. L. Zhang, Active thermal cloak, Appl. Phys. Lett. 107(12), 121901 (2015)
CrossRef
ADS
Google scholar
|
[34] |
S. Guenneau and C. Amra, Anisotropic conductivity rotates heat fluxes in transient regimes, Opt. Express 21(5), 6578 (2013)
CrossRef
ADS
Google scholar
|
[35] |
T. C. Han, J. J. Zhao, T. Yuan, D. Y. Lei, B. W. Li, and C. W. Qiu, Theoretical realization of an ultra-efficient thermalenergy harvesting cell made of natural materials, Energy Environ. Sci. 6(12), 3537 (2013)
CrossRef
ADS
Google scholar
|
[36] |
Y. C. Liu, F. Sun, and S. L. He, Novel thermal lens for remote heating/cooling designed with transformation optics, Opt. Express 24(6), 5683 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |