Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma

Vishal Thakur , Niti Kant

Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 115202

PDF (317KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 115202 DOI: 10.1007/s11467-016-0563-8
RESEARCH ARTICLE

Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma

Author information +
History +
PDF (317KB)

Abstract

The resonant third-harmonic generation of a self-focusing laser in plasma with a density transition was investigated. Because of self-focusing of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular momentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the effect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.

Keywords

short pulse laser / pulse slippage / third harmonic generation / plasma

Cite this article

Download citation ▾
Vishal Thakur, Niti Kant. Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys., 2016, 11(4): 115202 DOI:10.1007/s11467-016-0563-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. K. Sharma and J. Parashar, Parametric instability of a lower hybrid wave in a dusty plasma, Indian J. Pure & Appl. Phys. 41, 290 (2003)

[2]

J. K. Sharma, J. Parashar, and A. S. Mehta, Relativistic stimulated Raman scattering in a plasma channel, Indian J. Pure & Appl. Phys. 41, 73 (2003)

[3]

J. Parasher and H. D. Pandey, Second-harmonic generation of laser radiation in a plasma with a density ripple, IEEE Trans. Plasma Sci. 20(6), 996 (1992)

[4]

J. Parashar and A. K. Sharma, Second harmonic generation by an obliquely incident laser on a vacuum plasma interface, Europhys. Lett. 41(4), 389 (1998)

[5]

T. K. Pramanik and D. P. Bhattacharya, Harmonic generation in semiconductors in the presence of deep repulsive traps, Solid State Commun. 74(6), 539 (1990)

[6]

N. Kant, D. N. Gupta, and H. Suk, Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas, Phys. Plasmas 19(1), 013101 (2012)

[7]

J. F. Han, D. N. Gao, H. Zhang, X. Y. Wang, and W. S. Duan, Effects of the dust size distribution in one-dimensional quantum dusty plasma, Front. Phys. 10(5), 105201 (2015)

[8]

H. H. Zhang, D. C. Mao, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)

[9]

X. G. Wang and Q. B. Luan, Low frequency whistler waves excited in fast magnetic reconnection processes, Front. Phys. 8(5), 585 (2013)

[10]

V. Malka, A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, C. Danson, D. Neely, and F. N. Walsh, Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas, Plasma Phys. 4(4), 1127 (1997)

[11]

E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu, Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas, IEEE Trans. Plasma Sci. 21(1), 95 (1993)

[12]

A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, Ultrafast, cross-correlated harmonic imaging through scattering media, Appl. Opt. 40(1), 45 (2001)

[13]

F. Théberge, N. Aközbek, W. Liu, J. F. Gravel, and S. L. Chin, Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses, Opt. Commun. 245(1-6), 399 (2005)

[14]

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Third harmonic generation and self-channeling in air using high-power femtosecond laser pulses, Phys. Rev. Lett. 89(14), 143901 (2002)

[15]

P. Sprangle, E. Esarey, and A. Ting, Nonlinear interaction of intense laser pulses in plasmas, Phys. Rev. Lett. 41, 4463 (1990)

[16]

E. Esarey and P. Sprangle, Generation of stimulated backscattered harmonic radiation from intense-laser interactions with beams and plasmas, Phys. Rev. A 45(8), 5872 (1992)

[17]

P. Sprangle, E. Esarey, and A. Ting, Nonlinear theory of intense laser-plasma interactions, Phys. Rev. Lett. 64(17), 2011 (1990)

[18]

S. Kaur and A. K. Sharma, Resonant third harmonic generation in a laser produced thin foil plasma,Phys. Plasmas 15(10), 102705 (2008)

[19]

N. Kant and V. Thakur, Enhanced resonant second harmonic generation in plasma based on density transition, Nukleonika. 60(2), 355 (2015)

[20]

N. Kant and A. K. Sharma, Effects of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma., J. Phys. D Appl. Phys. 37(7), 998 (2004)

[21]

J. Rajput, N. Kant, H. Singh, and V. Nanda, Resonant third harmonic generation of a short pulse laser in plasma by applying a wiggler magnetic field, Opt. Commun. 282(23), 4614 (2009)

[22]

N. Kant, D. N. Gupta, and H. Suk, Generation of second harmonic radiations of a self-focusing laser from plasma with density-transition, Phys. Lett. A 375(35), 3134 (2011)

[23]

C. S. Liu and V. K. Tripathi, Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam, Phys. Plasmas 15(2), 023106 (2008)

[24]

U. Verma and A. K. Sharma, Effect of laser self-defocusing on third harmonic generation in a tunnel ionizing gas, Phys. Plasmas 16(1), 013101 (2009)

[25]

M. S. Sodha, R. K. Khanna, and V. K. Tripathi, Nonlinear third-harmonic generation in a plasma by a Gaussian electromagnetic beam: Effect of self-focusing, Phys. Rev. A 12(1), 219 (1975)

[26]

N. Kant, M. A. Wani, and A. Kumar, Self-focusing of Hermite-Gaussian laser beams in Plasma under plasma density ramp, Opt. Commun. 285(21-22), 4483 (2012)

[27]

V. Nanda, N. Kant, and M. A. Wani, Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile, Phys. Plasmas 20(11), 113109 (2013)

[28]

V. Nanda and N. Kant, Enhanced relativistic self-focusing of Hermite-cosh-Gaussian (HChG) laser beam in plasma under density transition, Phys. Plasmas 21(4), 042101 (2014)

[29]

V. Nanda and N. Kant, Strong Self-Focusing of a cosh-Gaussian Laser Beam in collisionless magneto-plasma under plasma density ramp, Phys. Plasmas 21(7), 072111 (2014)

[30]

M. Aggarwal, S. Vij, and N. Kant, Wiggler magnetic field assisted second harmonic generation in clusters, Eur. Phys. J. 69, 149 (2015)

[31]

S. Vij, N. Kant, and M. Aggarwal, Resonant third harmonic generation in clusters with density ripple: Effect of pulse slippage, Laser and Part. Beams 1, 1 (2016)

[32]

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, Third harmonic generation in plasma plumes using picosecond and femtosecond laser pulses, J. Opt. 12(5), 055202 (2010)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (317KB)

936

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/