Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations

Bakhtiar Ul Haq1,2,Rashid Ahmed1,*(),Galila Abdellatif5,Amiruddin Shaari1,Faheem K. Butt3,4,Mohammed Benali Kanoun6,Souraya Goumri-Said6,*()

PDF(402 KB)
PDF(402 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (1) : 117101. DOI: 10.1007/s11467-015-0542-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations

  • Bakhtiar Ul Haq1,2,Rashid Ahmed1,*(),Galila Abdellatif5,Amiruddin Shaari1,Faheem K. Butt3,4,Mohammed Benali Kanoun6,Souraya Goumri-Said6,*()
Author information +
History +

Abstract

The low magnetic moment (MM) in diluted magnetic semiconductors (DMS) at low impurity doping levels has triggered considerable research into condensed magnetic semiconductors (CMS).This work reports an ab-initio investigation of the electronic structures and magnetic properties of ZnO in a zinc-blende (ZB) structure doped with nickel ions. Ni-doped ZnO-based DMS and CMS exhibit a dominance of ferromagnetic coupling over antiferromagnetic. A robust increase in the magnetization has been observed as a function of Ni impurity levels. This material favors short-range magnetic interactions at the ground state, suggesting that the observed ferromagnetism is defined by the double exchange mechanism. The spin-polarized density of states (DOS) of Ni-doped ZnO characterizes it as half-metallic with a considerable energy gap for up-spin components and as metallic for-down spins. Half-metallic Ni:ZnO based magnetic semiconductors with high magnetization are expected to have potential applications in spintronics.

Keywords

ZnO / diluted magnetic semiconductors / ab-initio calculations / electronic structure / magnetic properties

Cite this article

Download citation ▾
Bakhtiar Ul Haq, Rashid Ahmed, Galila Abdellatif, Amiruddin Shaari, Faheem K. Butt, Mohammed Benali Kanoun, Souraya Goumri-Said. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations. Front. Phys., 2016, 11(1): 117101 https://doi.org/10.1007/s11467-015-0542-5

References

1 Y. Ohno, D. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. Awschalom, Nature 402(6763), 790 (1999)
2 T. Dietl, H. Ohno, F. Matsukura, J.Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287(5455), 1019 (2000)
3 T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Magnetic properties of Mn-doped ZnO, Appl. Phys. Lett. 78(7), 958 (2001)
4 T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO, Appl. Phys. Lett. 75(21), 3366 (1999)
5 A. Bonanni and T. Dietl, A story of high-temperature ferromagnetism in semiconductors, Chem. Soc. Rev. 39(2), 528 (2010)
6 I. Bilecka, L. Luo, I. Djerdj, M. D. Rossell, M. Jagodic, Z. Jaglicic, Y. Masubuchi, S. Kikkawa, and M. Niederberger, Microwave-assisted nonaqueous sol-gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals, J. Phys. Chem. C 115(5), 1484 (2011)
7 F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Clusters and magnetic anchoring points in (Ga,Fe)N condensed magnetic semiconductors, Phys. Rev. Lett. 107(19), 196401 (2011)
8 M. V. Limaye, S. B. Singh, S. K.Date, R. Gholap, and S. K. Kulkarni, Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles, Mater. Res. Bull. 44(2), 339 (2009)
9 A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys. 102(7), 071101 (2007)
10 G. Lee, T. Kawazoe, and M. Ohtsu, Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures, Appl. Surf. Sci. 239(3), 394 (2005)
11 J. Zhang, K. Yao, Z. Liu, and G. Gao, First principles calculations of Co-doped zinc-blende ZnO magnetic semiconductor, Physica B 405(6), 1447 (2010)
12 N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. Saidi, and E. Hlil, Electronic and magnetic structures of V-doped zinc blende Zn 1-xVxNyO1-y and Zn 1-xVxPyO1-y, Chin. Phys. B 20(8), 087504 (2011)
13 C. C. Xu, L. Jiang, N. Leng, and P. J. Liu, Selective triggering of phase change in dielectrics by femtosecond pulse trains based on electron dynamics control, Chin. Phys. B 22(4), 047507 (2013)
14 X. Li, J. Zhang, B. Xu, and K. Yao, Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study, J. Magn. Magn. Mater. 324(4), 584 (2012)
15 B. U. Haq, R. Ahmed, A. Afaq, A. Shaari, and M. Zarshenas, Structural and electronic properties of ni-doped ZnO in zinc-blende phase: A DFT investigations, in: International Conference on Fundamental and Applied Sciences 2012 (ICFAS2012), AIP Publishing, 2012
16 T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films, Physica E 10(1), 260 (2001)
17 S. W. Jung, W. I. Park, G. C. Yi, and M. Kim, Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures, Adv. Mater. 15(16), 1358 (2003)
18 J. Cui and U. Gibson, Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays, Appl. Phys. Lett. 87(13), 133108 (2005)
19 M. Venkatesan, C. Fitzgerald, J. Lunney, and J. Coey, Anisotropic ferromagnetism in substituted zinc oxide, Phys. Rev. Lett. 93(17), 177206 (2004)
20 B. Li, X. Xiu, R. Zhang, Z. Tao, L. Chen, Z. Xie, Y. Zheng, and Z., Study of structure and magnetic properties of Ni-doped ZnO-based DMSs, Mater. Sci. Semicond. Process. 9(1), 141 (2006)
21 D. L. Hou, R. B. Zhao, Y. Y. Wei, C. M. Zhen, C. F. Pan, and G. D. Tang, Room temperature ferromagnetism in Ni-doped ZnO films, Curr. Appl. Phys. 10(1), 124 (2010)
22 B. Pandey, S. Ghosh, P. Srivastava, D. Avasthi, D. Kabiraj, and J. Pivin, Synthesis and characterization of Ni-doped ZnO: A transparent magnetic semiconductor, J. Magn. Magn. Mater. 320(24), 3347 (2008)
23 C. Cong, J. Hong, Q. Liu, L. Liao, and K. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles, Solid State Commun. 138(10), 511 (2006)
24 G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, and J. Xu, Synthesis and magnetic properties of Ni-doped zinc oxide powders, J. Magn. Magn. Mater. 302(2), 340 (2006)
25 T. Li, H. Qiu, P. Wu, M. Wang, and R. Ma, Characteristics of Ni-doped ZnO:Al films grown on glass by direct current magnetron co-sputtering, Thin Solid Films 515(7), 3905 (2007)
26 G. Gu, G. Xiang, J. Luo, H. Ren, M. Lan, D. He, and X. Zhang, Magnetism in transition-metal-doped ZnO: A first-principles study, J. Appl. Phys. 112(2), 023913 (2012)
27 Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties, Appl. Phys. Lett. 78(24), 3824 (2001)
28 Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, and K. Ibrahim, Structural, magnetic properties and photoemission study of Ni-doped ZnO, Solid State Commun. 135(7), 430 (2005)
29 G. Pei, C. Xia, B. Wu, T. Wang, L. Zhang, Y. Dong, and J. Xu, Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations, Comput. Mater. Sci. 43(3), 489 (2008)
30 B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Goering, and B. Baretzky, Grain boundary layers in nanocrystalline ferromagnetic zinc oxide, JETP Lett. 92(6), 396 (2010)
31 P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, 2001
32 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18), 3865 (1996)
33 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
34 F. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
35 B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq, Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches, Phase Transitions 86 (12), 1167 (2013)
36 B. Ul Haq, R. Ahmed, R. Khenata, M. Ahmed, and R. Hussain, A first-principles comparative study of exchange and correlation potentials for ZnO, Mater. Sci. Semicond. Process. 16 (4), 1169(2013)
37 B. Ul Haq, A. Afaq, R. Ahmed, and S. Naseem, A Comprehensive DFT study of zinc oxide in different phases, Int. J. Mod. Phys. C 23(06), 1250043 (2012)
38 J. Fu, B. Wu, H. Liu, C. Zhang, M. Lin, and L. Chen, Structural and magnetic ordering behaviour of (Co, Ni, and Al) doped ZnO diluted magnetic semiconductor, in: 2010 Symposium on Photonics and Optoelectronic (SOPO), IEEE, 2010
39 B. Ul Haq, R. Ahmed, A. Shaari, and S. Goumri-Said, GGA+Uinvestigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO, J. Magn. Magn. Mater. 362, 104 (2014)
40 B. Ul Haq, R. Ahmed, and S. Goumri-Said, Tailoring ferromagnetism in chromium-doped zinc oxide, Mater. Res. Exp. 1(1), 016108 (2014)
41 S. Goumri-Said, M. B. Kanoun, A. Manchon, and U. Schwingenschlögl, Spin-polarization reversal at the interface between benzene and Fe(100), J. Appl. Phys. 113(1), 013905 (2013)
42 A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96(1), 99 (1954)
Funding
 
AI Summary AI Mindmap
PDF(402 KB)

Accesses

Citations

Detail

Sections
Recommended

/