Synthesis of atomically thin GaSe wrinkles for strain sensors

Cong Wang, Sheng-Xue Yang, Hao-Ran Zhang, Le-Na Du, Lei Wang, Feng-You Yang, Xin-Zheng Zhang, Qian Liu

PDF(290 KB)
PDF(290 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 116802. DOI: 10.1007/s11467-015-0522-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis of atomically thin GaSe wrinkles for strain sensors

Author information +
History +

Abstract

A wrinkle-based thin-film device can be used to develop optoelectronic devices, photovoltaics, and strain sensors. Here, we propose a stable and ultrasensitive strain sensor based on two-dimensional (2D) semiconducting gallium selenide (GaSe) for the first time. The response of the electrical resistance to strain was demonstrated to be very sensitive for the GaSe-based strain sensor, and it reached a gauge factor of –4.3, which is better than that of graphene-based strain sensors. The results show us that strain engineering on a nanoscale can be used not only in strain sensors but also for a wide range of applications, such as flexible field-effect transistors, stretchable electrodes, and flexible solar cells.

Keywords

GaSe wrinkles / strain sensor

Cite this article

Download citation ▾
Cong Wang, Sheng-Xue Yang, Hao-Ran Zhang, Le-Na Du, Lei Wang, Feng-You Yang, Xin-Zheng Zhang, Qian Liu. Synthesis of atomically thin GaSe wrinkles for strain sensors. Front. Phys., 2016, 11(2): 116802 https://doi.org/10.1007/s11467-015-0522-9

References

[1]
K. R. Allakhverdiev, M. O. Yetis, S. Ozbek, T. K. Baykara, and E. Y. Salaev, Effective nonlinear GaSe crystal: Optical properties and applications, Laser Phys. 19(5), 1092 (2009)
CrossRef ADS Google scholar
[2]
K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
CrossRef ADS Google scholar
[3]
K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Twodimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[4]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[5]
J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 106801 (2015)
CrossRef ADS Google scholar
[6]
W.-J. Li, D. X. Yao, and E. W. Carlson, Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon, Front. Phys. 9(4), 472 (2014)
CrossRef ADS Google scholar
[7]
C. Stampfer, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Droscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys. 6, 271 (2011)
CrossRef ADS Google scholar
[8]
K. Novoselov, E. McCann, S. Morozov, V. I. Fal’ko, M. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. Geim, Unconventional quantum Hall effect and Berry’s phase of 2p in bilayer graphene, Nat. Phys. 2(3), 177 (2006)
CrossRef ADS Google scholar
[9]
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)
CrossRef ADS Google scholar
[10]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[11]
Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, Plasmon-induced doping of graphene, ACS Nano 6(11), 10222 (2012)
CrossRef ADS Google scholar
[12]
Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14(1), 299 (2013)
CrossRef ADS Google scholar
[13]
J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, Patterning of graphene, Nanoscale 4(16), 4883 (2012)
CrossRef ADS Google scholar
[14]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef ADS Google scholar
[15]
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef ADS Google scholar
[16]
H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
CrossRef ADS Google scholar
[17]
T. Scrace, Y. Tsai, B. Barman, L. Schweidenback, A. Petrou, G. Kioseoglou, I. Ozfidan, M. Korkusinski, and P. Hawrylak, Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers, Nat. Nanotechnol. 10(7), 603 (2015)
CrossRef ADS Google scholar
[18]
E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Valley-selective optical Stark effect in monolayer WS2, Nat. Mater. 14(3), 290 (2014)
CrossRef ADS Google scholar
[19]
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoˇglu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
CrossRef ADS Google scholar
[20]
A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2, Nat. Phys. 10(2), 130 (2014)
CrossRef ADS Google scholar
[21]
X. Zhou, J. Cheng, Y. Zhou, T. Cao, H. Hong, Z. Liao, S. Wu, H. Peng, K. Liu, and D. Yu, Strong second-harmonic generation in atomic layered GaSe, J. Am. Chem. Soc. (2015)
CrossRef ADS Google scholar
[22]
X. Yuan, L. Tang, S. Liu, P. Wang, Z. G. Chen, C. Zhang, Y. Liu, W. Wang, Y. Zou, C. Liu, N. Guo, J. Zou, P. Zhou, W. Hu, and F. Xiu, Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy, Nano Lett. 15(5), 3571 (2015)
CrossRef ADS Google scholar
[23]
D. J. Late, B. Liu, J. Luo, A. Yan, H. S. Matte, M. Grayson, C. N. Rao, and V. P. Dravid, GaS and GaSe ultrathin layer transistors, Adv. Mater. 24(26), 3549 (2012)
CrossRef ADS Google scholar
[24]
S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, Synthesis and photoresponse of large GaSe atomic layers, Nano Lett. 13(6), 2777 (2013)
CrossRef ADS Google scholar
[25]
Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, and H. Peng, Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets, ACS Nano 8(2), 1485 (2014)
CrossRef ADS Google scholar
[26]
Y. Cao, K. Cai, P. Hu, L. Zhao, T. Yan, W. Luo, X. Zhang, X.Wu, K.Wang, and H. Zheng, Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors, Sci. Rep. 5, 8130 (2015)
CrossRef ADS Google scholar
[27]
X. Li, M. W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M. Chi, M. Yoon, C. M. Rouleau, and D. B. Kravchenko, Geohegan, and K. Xiao, Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse, Sci. Rep. 4, 5497 (2014)
[28]
L. Karvonen, A. Säynätjoki, S. Mehravar, R. D. Rodriguez, S. Hartmann, D. R. Zahn, S. Honkanen, R. A. Norwood, N. Peyghambarian, and K. Kieu, Investigation of second-and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy, Sci. Rep. 5, 10334 (2015)
CrossRef ADS Google scholar
[29]
W. Jie, X. Chen, D. Li, L. Xie, Y. Y. Hui, S. P. Lau, X. Cui, and J. Hao, Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer gase sheets, Angew. Chem. 127(4), 1201 (2015)
CrossRef ADS Google scholar
[30]
J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, Ultra-sensitive strain sensors based on piezoresistive nanographene films, Appl. Phys. Lett. 101(6), 063112 (2012)
CrossRef ADS Google scholar
[31]
Y. Wang, R. Yang, Z. W. Shi, L. C. Zhang, D. X. Shi, E. Wang, and G. Y. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano 5(5), 3645 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(290 KB)

Accesses

Citations

Detail

Sections
Recommended

/