Quasiparticle scattering interference in electron-doped cuprate superconductors

Shu-Hua Wang, Shuang-Sheng Yang, Huai-Song Zhao, Feng Yuan

PDF(1640 KB)
PDF(1640 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (6) : 107405. DOI: 10.1007/s11467-015-0521-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Quasiparticle scattering interference in electron-doped cuprate superconductors

Author information +
History +

Abstract

By considering the nonmonotonic d-wave gap effect, the energy and momentum dependence of quasiparticle scattering interference is studied in the presence of a single impurity. It is shown that the pattern of the quasiparticle scattering peaks in the full Brillouin zone of electron-doped cuprate superconductors is very different from that in the hole-doped case described by the Octet model. This difference is the result of the nonmonotonic d-wave superconducting gap in the electron-doped case. As the energy increases, the position of the local peaks in the Brillouin zone moves rapidly. In particular, the characteristic peaks of the electron-doped cuprate superconductors appear between the antinodal and nodal directions, unlike in the hole-doped case.

Keywords

cuprate superconductors

Cite this article

Download citation ▾
Shu-Hua Wang, Shuang-Sheng Yang, Huai-Song Zhao, Feng Yuan. Quasiparticle scattering interference in electron-doped cuprate superconductors. Front. Phys., 2015, 10(6): 107405 https://doi.org/10.1007/s11467-015-0521-x

References

[1]
Y. Tokura, H. Takagi, and S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers, Nature337, 345 (1989)
CrossRef ADS Google scholar
[2]
N. P. Armitage, P. Fourier, and R. L. Greene, Progress and perspectives on electron-doped cuprates, Rev. Mod. Phys.82(3), 2421 (2010)
CrossRef ADS Google scholar
[3]
A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys.75(2), 473 (2003)
CrossRef ADS Google scholar
[4]
A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Superconductivity above 130 K in the Hg−Ba−Ca−Cu−O system Nature363(6424), 56 (1993)
CrossRef ADS Google scholar
[5]
C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng, and Y. Y. Xue, Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures, Nature365(6444), 323 (1993)
CrossRef ADS Google scholar
[6]
M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Rev. Mod. Phys.70(3), 897 (1998)
CrossRef ADS Google scholar
[7]
Y. Krockenberger, J. Kurian, A. Winkler, A. Tsukada, M. Naito, and L. Alff, Superconductivity phase diagrams for the electron-doped cuprates R2−xCexCuO4(R=La, Pr,Nd, Sm, Eu), Phys. Rev. B77(6), R060505 (2008)
CrossRef ADS Google scholar
[8]
C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys.72(4), 969 (2000)
CrossRef ADS Google scholar
[9]
H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. F. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x, Phys. Rev. B54(14), R9678 (1996)
CrossRef ADS Google scholar
[10]
M. Guidry and Y. Sun, Superconductivity and superfluidity as universal emergent phenomena, Front. Phys.10(4), 107404 (2015)
CrossRef ADS Google scholar
[11]
X.-G. Xu and W. Li, Electronic and magnetic structures of ternary iron telluride KFe2Te2, Front. Phys.10(4), 107403 (2015)
CrossRef ADS Google scholar
[12]
W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys.9(4), 471 (2014)
CrossRef ADS Google scholar
[13]
Y. Liang, X. X. Wu, W.-F. Tsai, and J. P. Hu, Pairing symmetry in layered BiS2 compounds driven by electron-electron correlation, Front. Phys.9(2), 199 (2014)
CrossRef ADS Google scholar
[14]
Y. Xing, Y. Sun, M. Singh, Y.-F. Zhao, M. H. W. Chan, and J. Wang, Electronic transport properties of topological insulator films and low dimensional superconductors, Front. Phys.8(5), 508 (2013)
CrossRef ADS Google scholar
[15]
H. Matsui, K. Terashima, T. Sato, T. Takahashi, M. Fujita, and K. Yamada, Direct observation of a nonmonotonic dx2−y2 wave superconducting gap in the electrondoped high-Tc supercondutor Pr0.89LaCe0.11CuO4, Phys. Rev. Lett.95(1), 017003 (2005)
CrossRef ADS Google scholar
[16]
N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, Z.-X. Shen, Y. Onose, Y. Taguchi, Y. Tokura, P. K. Mang, N. Kaneko, and M. Greven, Anomalous electronic structure and pseudogap effects in Nd1.85Ce0.15CuO4, Phys. Rev. Lett.87(14), 147003 (2001)
CrossRef ADS Google scholar
[17]
N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, and Z. X. Shen, Doping dependence of an n-type cuprate superconductor investigated by angle-resolved photoemission spectroscopy, Phys. Rev. Lett.88(25), 257001 (2002)
CrossRef ADS Google scholar
[18]
E. H. da Silva Netoz, R. Cominz, Feizhou He, R. Sutarto, Yeping Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, Charge ordering in the electron-doped superconductor Nd2−xCexCuO4, Science347(6219), 282 (2015)
CrossRef ADS Google scholar
[19]
A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurity-induced states in conventional and unconventional superconductors, Rev. Mod. Phys.78(2), 373 (2006)
CrossRef ADS Google scholar
[20]
O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Rev. Mod. Phys.79(1), 353 (2007)
CrossRef ADS Google scholar
[21]
I. M. Vishik, E. A. Nowadnick, W. S. Lee, Z. X. Shen, B. Moritz, T. P. Devereaux, K. Tanaka, T. Sasagawa, and T. Fujii, A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ, Nat. Phys.5(10), 718 (2009)
CrossRef ADS Google scholar
[22]
J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ, Science297(5584), 1148 (2002)
CrossRef ADS Google scholar
[23]
K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis, Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ, Nature422(6932), 592 (2003)
CrossRef ADS Google scholar
[24]
Q.-H. Wang and D.-H. Lee, Quasiparticle scattering interference in high-temperature superconductors, Phys. Rev. B67(2), 020511 (2003)
CrossRef ADS Google scholar
[25]
J.-X. Zhu, A. V. Balatsky, T. P. Devereaux, Qimiao Si, J. Lee, K. McElroy, and J. C. Davis, Fourier-transformed local density of states and tunneling into a d-wave superconductor with bosonic modes, Phys. Rev. B73(1), 014511 (2006)
CrossRef ADS Google scholar
[26]
D. Zhang and C. S.Ting, Energy-dependent modulations in the local density of states of the cuprate superconductors, Phys. Rev. B67(10), 100506 (2003)
CrossRef ADS Google scholar
[27]
T. S. Nunner, W. Chen, B. M. Andersen, A. Melikyan, and P. J. Hirschfeld, Fourier transform spectroscopy of d-wave quasiparticles in the presence of atomic scale pairing disorder, Phys. Rev. B73(10), 104511 (2006)
CrossRef ADS Google scholar
[28]
B. Liu, X. Yan, and F. Yuan, Electron correlation and impurity-induced quasiparticle resonance states in cuprate superconductors, Journal of the Physical Society of Japan82(10), 114713 (2013)
CrossRef ADS Google scholar
[29]
B. Liu, X. Yan, and F. Yuan, Quasiparticle resonance states induced by a nonmagnetic impurity in Gossamer superconductors, Solid State Communications177, 123 (2014)
CrossRef ADS Google scholar
[30]
B. Liu and Y. Liang, Density of states and nonmagnetic impurity effects in electron-doped cuprates, Phys. Rev. B77(24), 245121 (2008)
CrossRef ADS Google scholar
[31]
B. Liu, Spin-resolved impurity resonance states in electrondoped cuprate superconductors, Phys. Rev. B79(17), 172501 (2009)
CrossRef ADS Google scholar
[32]
Z. P. Huang, X. X.Wan, and F. Yuan, Local density of states around two nonmagnetic impurities in cuprate superconductors, Front. Phys.6(3), 309 (2011)
CrossRef ADS Google scholar
[33]
S. H. Wang, H. S. Zhao, and F. Yuan, Quasiparticle scattering interference in the renormalized Hubbard model, Front. Phys.10(1), 107401 (2015)
CrossRef ADS Google scholar
[34]
H. Matsui, T. Sato, T. Takahashi, S. C. Wang, H. B. Yang, H. Ding, T. Fujii, T. Watanabe, and A. Matsuda, BCS-Like Bogoliubov quasiparticles in high-Tc superconductors observed by angle-resolved photoemisson spectroscopy, Phys. Rev. Lett.90(21), 217002 (2003)
CrossRef ADS Google scholar
[35]
A. Hackl and S. Sachdev, Nernst effect in the electron-doped cuprate superconductors, Phys. Rev. B79(23), 235124 (2009)
CrossRef ADS Google scholar
[36]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev.108(5), 1175 (1957)
CrossRef ADS Google scholar
[37]
Jian-Qiao Meng, M. Brunner, K.-H. Kim, H.-G. Lee, S.-I. Lee, J. S. Wen, Z. J. Xu, G. D. Gu, and G.-H. Gweon, Momentum-space electronic structures and charge orders of the high-temperature superconductors Ca2−xNaxCuO2Cl2 and Bi2Sr2CaCu2O8+δ, Phys. Rev. B84(6), 060513(R) (2011)
[38]
A. C. Durst and P. A. Lee, Impurity-induced quasiparticle transport and universal-limit Wiedemann–Franz violation in d-wave superconductors, Phys. Rev. B62(2), 1270 (2000)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1640 KB)

Accesses

Citations

Detail

Sections
Recommended

/