A novel hanging bowl-shaped mask for the fabrication of vertical sidewall structures
Dongxue Chen, Qian Liu
A novel hanging bowl-shaped mask for the fabrication of vertical sidewall structures
Contact exposure is expected to occur in conventional lithography, and can be a source of process deviations (such as shrinking and distortion of templates) during reactive ion etching and inductively coupled plasma etching, as these deviations are induced by ion bombardment. This typically results in undesired sidewall effects, such as lower sidewall angles. Here we report a novel hanging bowlshaped lithography mask that can effectively minimize sidewall effects in lithography applications. As a test case, standard silicon carbide pillars with vertical sidewalls are fabricated using this mask. The mask could be used for fabrication of high-aspect-ratio structures with ultra-violet lithography.
UV lithography / hanging bowl-shaped mask / sidewall effects / ICP / SiC
[1] |
P. spinelli, M. A. Verschuuren, and A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators, Nat. Commun. 3, 692 (2012)
CrossRef
ADS
Google scholar
|
[2] |
H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing, Adv. Mater.25(19), 2678 (2013)
CrossRef
ADS
Google scholar
|
[3] |
J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Lett.9 (1), 279 (2009)
CrossRef
ADS
Google scholar
|
[4] |
W. Karim, S. A. Tschupp, M. Oezaslan, T. J. Schmidt, J. Gobrecht, J. A. van Bokhoven and Y. Ekinci, Highresolution and large-area nanoparticle arrays using EUV interference lithography. Nanoscale7(16), 7386 (2015)
CrossRef
ADS
Google scholar
|
[5] |
H. J. Lee, C. H. Lee, N. T. Lian, M. C. Deng, T. H. Yang, K. C. Chen, and C. Y. Lu, Effects of BCl3 gas on physical damage and Al residues in oxide hard-mask-based Al etching, Semicond. Sci. Technol.22, 678 (2007)
CrossRef
ADS
Google scholar
|
[6] |
R. Ding, Y. Yang, and R. Han, Microtrenching effect of SiC ICP etching in SF6/O2 plasma, J. Semicond.30 (1), 016001 (2009)
CrossRef
ADS
Google scholar
|
[7] |
J. Ning, Q. Gong, G. Sun, and Z. Liu, The ICP etching technology of 3C-SiC films, J. Phys.: Conf. Ser.34, 511 (2006)
CrossRef
ADS
Google scholar
|
[8] |
R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek Jr., C. Tran, and M. Schurman, Inductively coupled plasma etching of GaN, Appl. Phys. Lett.69 (8), 1119 (1996)
CrossRef
ADS
Google scholar
|
[9] |
A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells, Nat. Commun.6, 5963 (2015)
CrossRef
ADS
Google scholar
|
[10] |
S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, Hybrid silicon nanocone–polymer solar cells, Nano Lett.12 (6), 2971 (2012)
CrossRef
ADS
Google scholar
|
[11] |
J. H. Choi, L. Latu-Romain, E. Bano, F. Dhalluin, T. Chevolleau and T. Baron, Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching, J. Phys. D: Appl. Phys.45, 235204 (2012)
CrossRef
ADS
Google scholar
|
[12] |
Y. Ou, V. Jokubavicius, P. Hens, M. Kaiser, P.Wellmann, R. Yakimova, M. Syväjärvi, and H. Ou, Broadband and omnidirectional light harvesting enhancement of fluorescent SiC, Opt. Exp. 20(7), 7575 (2012)
CrossRef
ADS
Google scholar
|
[13] |
S. Osborne, M. Nanninga, H. Takahashi, E. Woster, C. Kanda, and J. Tibbe, Mask cleaning strategies—particle elimination with minimal surface damage, Proc. SPIE.5992, 59923G (2005)
CrossRef
ADS
Google scholar
|
[14] |
E. Hoshino, T. Ogawa, M. Takahashi, H. Hoko, H. Yamanashi, N. Hirano, and S. Okazaki, Damage control during dry etching of EUV mask (I): Control of surface roughness, Proc. SPIE. 3873, 19th Annual Symposium on Photomask Technology, 786 (1999)
|
[15] |
Y. Tanaka, I. Nishiyama , T. Abe, S. Sasaki, N. Hayashi, Evaluation of multilayer damage in EUVL mask fabrication process, Proc. SPIE. 5567, 24th Annual BACUS Symposium on Photomask Technology,1377 (2004)
CrossRef
ADS
Google scholar
|
[16] |
M. Kureishi , R. Ohkubo, M. Hosoya, T. Shoki, N. Sakaya, H. Kobayashi, O. Nozawa, Y. Usui, and O. Nagarekawa, Development of low damage mask making process on EUV mask with thin CrN buffer layer, Proc. SPIE. 5751, Emerging Lithographic Technologies IX,158 (2005)
|
[17] |
P. Y. Yan and G. Zhang, Method of protecting an EUV mask from damage and contamination, United States patent, US 08/995, 867 (1997)
|
[18] |
R. G. Hsieh, C. C. Hung, and J. J. Shin, Charge effect and electrostatic damage prevention method on photo-mask, United States patent, US 10/187, 675 (2005)
|
[19] |
A. Garetto, J. Oster, M. Waiblinger, K. Edinger, Challenging damage repair techniques for maximizing mask repair yield, Proc. SPIE. 7488, Photomask Technology2009, 74880H (2009)
|
[20] |
D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, Ultrahighquality silicon carbide single crystals, Nature430, 1009 (2004)
CrossRef
ADS
Google scholar
|
[21] |
Y. Liu and C. Xie, Large-area SiC membrane produced by plasma enhanced chemical vapor deposition at relatively high temperature, J. Vac. Sci. Technol. A 33, 05E114 (2015)
|
[22] |
D. W. Feldman, James H. Parker, Jr., W. J. Choyke, and L. Patrick, Raman Scattering in 6H SiC, Phys. Rev.170, 698 (1968)
CrossRef
ADS
Google scholar
|
[23] |
L. Huang and Z. Zeng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. 7(3), 324 (2012)
CrossRef
ADS
Google scholar
|
[24] |
C. Xie, X. Zhu, H. Li, J. Niu, Y. Hua, and L. Shi, Fabrication of X-ray diffractive optical elements for laser fusion applications, Opt. Eng. 52(3), 033402 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |