Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor

Xin-Fang Zhang (张鑫方), Zheng-Wei Zhang (张正伟), Yan-Lan He (何焰兰), Yi-Xing Liu (刘一星), Shuang Li (黎双), Jing-Yue Fang (方靖越), Xue-Ao Zhang (张学骜), Gang Peng (彭刚)

PDF(384 KB)
PDF(384 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 116801. DOI: 10.1007/s11467-015-0519-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor

Author information +
History +

Abstract

Decane is one of the volatile organic compounds (VOCs) in human breath. Successful detection of decane in human breath has vast prospects for early lung cancer diagnosis. In this paper, a novel detecting device based on a filter surface acoustic wave (SAW) gas sensor is presented. SAW sensors coated with a thin oxidized graphene film were used to detect decane in parts per million (ppm) concentrations. Control and signal detection circuits were designed using a vector network analyzer with a detection resolution of insertion loss down to 0.0001 dB. The results showed that the SAW sensor could respond quickly with great sensitivity when exposed to 0.2 ppm decane. This device shows tremendous potential in medical diagnosis and environmental assessment.

Keywords

decane / graphene oxide / lung-cancer biomarker / SAW gas sensor

Cite this article

Download citation ▾
Xin-Fang Zhang (张鑫方), Zheng-Wei Zhang (张正伟), Yan-Lan He (何焰兰), Yi-Xing Liu (刘一星), Shuang Li (黎双), Jing-Yue Fang (方靖越), Xue-Ao Zhang (张学骜), Gang Peng (彭刚). Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor. Front. Phys., 2016, 11(2): 116801 https://doi.org/10.1007/s11467-015-0519-4

References

[1]
Y. Adiguzel and H. Kulah, Breath sensors for lung cancer diagnosis, Biosens. Bioelectron.65, 121 (2015)
CrossRef ADS Google scholar
[2]
M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, and R. N. Cataneo, Variation in volatile organic compounds in the breath of normal humans, J. Chromatogr. B Biomed. Sci. Appl. 729(1-2), 75 (1999)
CrossRef ADS Google scholar
[3]
M. Phillips, K. Gleeson, J. M. B. Hughes, J. Greenberg, R. N.Cataneo, L.Baker, and W. P. McVay, Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study, Lancet 353(9168), 1930 (1999)
CrossRef ADS Google scholar
[4]
A. Jemal, R. Siegel, E. Ward, Y.Hao, J. Xu, T.Murray, and M. J. Thun, Cancer statistics, CA Cancer J. Clin. 58(2), 71 (2008)
CrossRef ADS Google scholar
[5]
H. J. O’Neill, S. M. Gordon, M. H.O’Neill, R. D.Gibbons, and J. P. Szidon, A computerized classification technique for screening for the presence of breath biomarkers in lung cancer, Clin. Chem. 34(8), 1613 (1988)
[6]
G. Peng, M. Hakim, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, U. Tisch, and H. Haick, Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors, Br. J. Cancer 103(4), 542 (2010)
CrossRef ADS Google scholar
[7]
G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, and H. Haick, Diagnosing lung cancer in exhaled breath using gold nanoparticles, Nat. Nanotechnol. 4(10), 669 (2009)
CrossRef ADS Google scholar
[8]
X. Chen, M. Cao, Y. Li, W. Hu, P. Wang, K. Ying, and H. Pan, A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method, Meas. Sci. Technol. 16(8), 1535 (2005)
CrossRef ADS Google scholar
[9]
R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhail, C. Jennings, J. K. Stoller, J. Pyle, J. Duncan, R. A. Dweik, and S. C. Erzurum, Detection of lung cancer by sensor array analyses of exhaled breath, Am. J. Respir. Crit. Care Med. 171(11), 1286 (2005)
CrossRef ADS Google scholar
[10]
J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors, Chem. Mater. 18(4), 867 (2006)
CrossRef ADS Google scholar
[11]
M. E. Franke, T. J. Koplin, and U. Simon, Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36 (2006)
CrossRef ADS Google scholar
[12]
J. Chen and N. Tsubokawa, Novel gas sensor from polymer-grafted carbon black: Vapor response of electric resistance of conducting composites prepared from poly(ethylene-block-ethylene oxide)-grafted carbon black, J. Appl. Polym. Sci. 77(11), 2437 (2000)
CrossRef ADS Google scholar
[13]
J. J. Miasik, A. Hooper, and B. C. Tofield, Conducting polymer gas sensors, J. Chem. Soc. Faraday Trans. 82(4), 1117 (1986)
CrossRef ADS Google scholar
[14]
J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 106801 (2015)
CrossRef ADS Google scholar
[15]
Y. Li, H. Zhang, D. W. Yan, H. F. Yin, and X. L. Cheng, Secondary plasmon resonance in graphene nanostructures, Front. Phys. 10(1), 102 (2015)
CrossRef ADS Google scholar
[16]
C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys. 6(3), 271 (2011)
CrossRef ADS Google scholar
[17]
Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater. 22(35), 3906 (2010)
CrossRef ADS Google scholar
[18]
D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S.Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)
CrossRef ADS Google scholar
[19]
Z. Zhang, X. Zhang, W. Luo, H. Yang, Y. He, Y. Liu, X. Zhang, and G. Peng, Study on adsorption and desorption of ammonia on graphene, Nanoscale Res. Lett. 10(1), 359(1) (2015)
[20]
M. Penza, C. Martucci, and G. Cassano, NO x gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers, Sens. Actuators B Chem. 50(1), 52 (1998)
CrossRef ADS Google scholar
[21]
W. S. HummersJr and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80, 1339 (1958)
CrossRef ADS Google scholar
[22]
V. V. Krylov, Effect of surface phenomena in solids on surface acoustic waves, Prog. Surf. Sci. 32(1), 39 (1989)
CrossRef ADS Google scholar
[23]
A. A. Oliner, Acoustic Surface Waves (Topics in Applied Physics Volume 24), Berlin and New York: Springer-Verlag, 1978, p. 342 (For individual items see A79-16052 to A79-16055)
[24]
Analytical Methods Committee, Recommendations for the definition, estimation and use of the detection limit, Analyst 112(2), 199 (1987)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(384 KB)

Accesses

Citations

Detail

Sections
Recommended

/