Solving the dark-matter problem through dynamic interactions

Werner A. Hofer

Front. Phys. ›› 2015, Vol. 10 ›› Issue (6) : 109502

PDF (184KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (6) : 109502 DOI: 10.1007/s11467-015-0514-9
RESEARCH ARTICLE

Solving the dark-matter problem through dynamic interactions

Author information +
History +
PDF (184KB)

Abstract

Owing to the renewed interest in dark matter after the upgrade of the large hadron collider and its dedication to dark-matter research, it is timely to reassess the whole problem. Considering dark matter is one way to reconcile the discrepancy between the velocity of matter in the outer regions of galaxies and the observed galactic mass. Thus far, no credible candidate for dark matter has been identified. Here, we develop a model accounting for observations by rotations and interactions between rotating objects analogous to magnetic fields and interactions with moving charges. The magnitude of these fields is described by a fundamental constant on the order of 10−41kg−1. The same interactions can be observed in the solar system, where they lead to small changes in planetary orbits.

Keywords

galactic rotation curves / dark matter / solar system / perihelion of Mercury / nodes of Venus

Cite this article

Download citation ▾
Werner A. Hofer. Solving the dark-matter problem through dynamic interactions. Front. Phys., 2015, 10(6): 109502 DOI:10.1007/s11467-015-0514-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. I. Ewen and E. M. Purcell, Observation of a line in the galactic radio spectrum: radiation from galactic hydrogen at 1420 Mc./sec., Nature168, 356 (1951)

[2]

Vera C. Rubin and W. Kent Ford Jr., Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions, Astrophys. J. 159, 379 (1970)

[3]

H. J. Rood, Clusters of galaxies, Rep. Prog. Phys.44(10), 1077 (1981)

[4]

K. G. Begeman, A. H. Broeils, and R. H. Sanders, Extended rotation curves of spiral galaxies- Dark haloes and modified dynamics, Mon. Not. R. Astron. Soc.249, 523 (1991)

[5]

. See, for example, the dark matter focus on the NASA website:

[6]

X.-J. Bi, P.-F. Yin, and Q. Yuan, Status of dark matter detection, Front. Phys.8(6), 794 (2013)

[7]

M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J.270, 365 (1983)

[8]

M. Milgrom, A modification of the Newtonian dynamics- Implications for galaxies, Astrophys. J.270, 371 (1983)

[9]

J. D. Jackson, Classical Electrodynamics, 3rd Ed., NJ: Wiley, 1998

[10]

S. Torres-Flores, B. Epinat, P. Amram, H. Plana, C. Mendes de Oliveira, GHASP: An H α kinematic survey of spiral and irregular galaxies- IX: The near-infrared, stellar and baryonic Tully–Fisher relations, Mon. Not. R. Astron. Soc.416, 1936 (2011)

[11]

See the NASA website at:

[12]

For the calculations we assumed circular orbits, with rM=5.79 × 1010m and ωM= 1.32 × 10−7s−1 for Mercury, and rE= 1.50 × 1011m and ωE= 3.17 × 10−8s−1 for Earth.

[13]

G. M. Clemence, The relativity effect in planetary motions, Rev. Mod. Phys.19, 361 (1947)

[14]

For the calculations of Venus we assumed a circular orbit with rV= 1.08 × 1011m and ωV= 5.15 × 10−8s−1.

[15]

Jean Chazy, La Theorie de la relativite et la Mechanique celeste, Gauthier Villars, Paris,1928, p. 230

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (184KB)

921

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/