Electronic and magnetic structures of ternary iron telluride KFe2Te2

Xu-Guang Xu, Wei Li

PDF(476 KB)
PDF(476 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107403. DOI: 10.1007/s11467-015-0495-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic and magnetic structures of ternary iron telluride KFe2Te2

Author information +
History +

Abstract

We examine the electronic and magnetic structures of iron telluride KFe2Te2 using first-principle calculations. We demonstrate that the ground state of this compound is in bicollinear antiferromagnetic order with Fe local moments (~ 2.6 μB) that are ferromagnetically aligned along a diagonal direction and antiferromagnetically aligned along the other diagonal in the Fe-Fe square lattice, similar to the alignment discovered in the parent compound of superconductor α-FeTe. This bicollinear antiferromagnetic order results from the interplay among the nearest, next-nearest, and next-nextnearest neighbor exchange interactions, which are mediated by Te 5p orbitals. This finding may aid our understanding of the interplay between magnetism and superconductivity in the family of iron-based materials.

Graphical abstract

Keywords

iron-basel materials / electronic and magnetic structures

Cite this article

Download citation ▾
Xu-Guang Xu, Wei Li. Electronic and magnetic structures of ternary iron telluride KFe2Te2. Front. Phys., 2015, 10(4): 107403 https://doi.org/10.1007/s11467-015-0495-8

References

[1]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef ADS Google scholar
[2]
M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen, Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2, Phys. Rev. B 78(2), 020503 (2008)
CrossRef ADS Google scholar
[3]
F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Superconductivity in the PbO-type structure a-FeSe, Proc. Natl. Acad. Sci. USA 105(38), 14262 (2008)
CrossRef ADS Google scholar
[4]
J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B 82, 180520(R) (2010)
[5]
C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. R. Ii, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems, Nature 453(7197), 899 (2008)
CrossRef ADS Google scholar
[6]
J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Competing orders and spin-density-wave instability in La(O1-xFx)FeAs, Europhys. Lett. 83(2), 27006 (2008)
CrossRef ADS Google scholar
[7]
F. Ma, W. Ji, J. Hu, Z. Y. Lu, and T. Xiang, First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: Evidence for a bicollinear antiferromagnetic order, Phys. Rev. Lett. 102(17), 177003 (2009)
CrossRef ADS Google scholar
[8]
S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and P. Dai, First-order magnetic and structural phase transitions in Fe1+ySexTe1-x, Phys. Rev. B 79(5), 054503 (2009)
CrossRef ADS Google scholar
[9]
W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te,Se) superconductors, Phys. Rev. Lett. 102(24), 247001 (2009)
CrossRef ADS Google scholar
[10]
W. Bao, Q. Z. Huang, G. F. Chen, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor, Chin. Phys. Lett. 28(8), 086104 (2011)
CrossRef ADS Google scholar
[11]
C. Cao and J. Dai, Block spin ground state and threedimensionality of (K,Tl)yFe1.6Se2, Phys. Rev. Lett. 107(5), 056401 (2011)
CrossRef ADS Google scholar
[12]
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor, Phys. Rev. B 83(23), 233205 (2011)
CrossRef ADS Google scholar
[13]
W. Li, S. Dong, C. Fang, and J. Hu, Block antiferromagnetism and checkerboard charge ordering in the alkali-doped iron selenides R1-xFe2-ySe2, Phys. Rev. B 85, 100407(R) (2012)
[14]
C. H. Li, B. Shen, F. Han, X. Zhu, and H. H. Wen, Transport properties and anisotropy of Rb1-xFe2-ySe2 single crystals, Phys. Rev. B 83(18), 184521 (2011)
CrossRef ADS Google scholar
[15]
Y. J. Yan, M. Zhang, A. F. Wang, J. J. Ying, Z. Y. Li, W. Qin, X. G. Luo, J. Q. Li, J. Hu, and X. H. Chen, Electronic and magnetic phase diagram in KxFe2-ySe2 superconductors, Sci. Rep. 2, 212 (2012)
CrossRef ADS Google scholar
[16]
F. Chen, M. Xu, Q. Q. Ge, Y. Zhang, Z. R. Ye, L. X. Yang, J. Jiang, B. P. Xie, R. C. Che, M. Zhang, A. F. Wang, X. H. Chen, D. W. Shen, M. H. Jiang, J. P. Hu, and D. L. Feng, Electronic identification of the parental phases and mesoscopic phase separation of KxFe2-ySe2 superconductors, Phys. Rev. X 1(2), 021020 (2011)
CrossRef ADS Google scholar
[17]
P. Cai, C. Ye, W. Ruan, X. Zhou, A. Wang, M. Zhang, X. Chen, and Y. Wang, Imaging the coexistence of a superconducting phase and a charge-density modulation in the K0.73Fe1.67Se2 superconductor using a scanning tunneling microscope, Phys. Rev. B 85(9), 094512 (2012)
CrossRef ADS Google scholar
[18]
W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J. P. Hu, X. Chen, and Q. K. Xue, Phase separation and magnetic order in K-doped iron selenide superconductor, Nat. Phys. 8(2), 126 (2011)
CrossRef ADS Google scholar
[19]
R. H. Yuan, T. Dong, Y. J. Song, P. Zheng, G. F. Chen, J. P. Hu, J. Q. Li, and N. L. Wang, Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2, Sci. Rep. 2, 221 (2012)
CrossRef ADS Google scholar
[20]
A. Zhang, T. Xia, K. Liu, W. Tong, Z. R. Yang, and Q. M. Zhang, Superconductivity at 44 K in K intercalated FeSe system with excess Fe, Sci. Rep. 3, 1216 (2013)
CrossRef ADS Google scholar
[21]
W. Bao, G. N. Li, Q. Huang, G. F. Chen, J. B. He, M. A. Green, Y. Qiu, D. M. Wang, and J. L. Luo, Superconductiv-ity tuned by the iron vacancy order in KxFe2-ySe2, Chin. Phys. Lett. 30(2), 027402 (2013)
CrossRef ADS Google scholar
[22]
Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy, Phys. Rev. B 83(14), 140505 (2011)
CrossRef ADS Google scholar
[23]
D. X. Mou, L. Zhao, and X. J. Zhou, Structural, magnetic and electronic properties of the ironCchalcogenide AxFe2-ySe2 (A= K, Cs, Rb, and Tl, etc.), Front. Phys. 6(4), 410 (2011)
CrossRef ADS Google scholar
[24]
D. Mou, S. Liu, X. Jia, J. He, Y. Peng, L. Zhao, L. Yu, G. Liu, S. He, X. Dong, J. Zhang, H. Wang, C. Dong, M. Fang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, Z. Xu, C. Chen, and X. J. Zhou, Distinct Fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor, Phys. Rev. Lett. 106(10), 107001 (2011)
CrossRef ADS Google scholar
[25]
I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx, Phys. Rev. Lett. 101(5), 057003 (2008)
CrossRef ADS Google scholar
[26]
K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx, Phys. Rev. Lett. 101(8), 087004 (2008)
CrossRef ADS Google scholar
[27]
W. Li, J. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Pairing symmetry in the iron-pnictide superconductor KFe2As2, Europhys. Lett. 99(5), 57006 (2012)
CrossRef ADS Google scholar
[28]
I. R. Shein and A. L. Ivanovskii, Structural, electronic properties and Fermi surface of ThCr2Si2-type tetragonal KFe2S2, KFe2 Se2, and KFe2 Te2 phases as parent systems of new ternary iron-chalcogenide superconductors, arXiv: 1102.4173 (2011)
[29]
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic and magnetic structures of the ternary iron selenides AFe2Se2 (A= Cs, Rb, K, or Tl), Phys. Rev. B 84(5), 054502 (2011)
CrossRef ADS Google scholar
[30]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[31]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[32]
J. P. Perdew, K. Burke, and M. Erznerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[33]
C. Cao and J. Dai, Electronic structure of KFe2Se2 from first-principles calculations, Chin. Phys. Lett. 28(5), 057402 (2011)
CrossRef ADS Google scholar
[34]
D. J. Singh, Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calculations, Phys. Rev. B 78(9), 094511 (2008)
CrossRef ADS Google scholar
[35]
W. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Firstprinciples calculations of the electronic structure of ironpnictide EuFe2(As,P)2 superconductors: Evidence for antiferromagnetic spin order, Phys. Rev. B 86(15), 155119 (2012)
CrossRef ADS Google scholar
[36]
N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56(20), 12847 (1997)
CrossRef ADS Google scholar
[37]
A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
CrossRef ADS Google scholar
[38]
W. Li, C. Setty, X. H. Chen, and J. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 465 (2014)
CrossRef ADS Google scholar
[39]
F. Ma, Z. Y. Lu, and T. Xiang, Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO, Phys. Rev. B 78(22), 224517 (2008)
CrossRef ADS Google scholar
[40]
Y. Liang, X. Wu, W. F. Tsai, and J. P. Hu, Pairing symmetry in layered BiS2 compounds driven by electron-electron correlation, Front. Phys. 9(2), 194 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(476 KB)

Accesses

Citations

Detail

Sections
Recommended

/