The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis

Francesco Mallamace , Carmelo Corsaro , Domenico Mallamace , Zhe Wang , Sow-Hsin Chen

Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 106103

PDF (466KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 106103 DOI: 10.1007/s11467-015-0487-8
RESEARCH ARTICLE

The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis

Author information +
History +
PDF (466KB)

Abstract

The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the (P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the “low-density liquid” (LDL) and “high-density liquid” (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature TW as the (P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.

Keywords

supercooled water / liquid-liquid phase transition (LLPT) / inelastic neutron scattering

Cite this article

Download citation ▾
Francesco Mallamace, Carmelo Corsaro, Domenico Mallamace, Zhe Wang, Sow-Hsin Chen. The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis. Front. Phys., 2015, 10(5): 106103 DOI:10.1007/s11467-015-0487-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Kennedy, 125th Anniversary Issue: 125 outstanding problems in all of science: What is the nature of the glassy state, Science 309, 83 (2005)

[2]

M. D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem. 51(1), 99 (2000)

[3]

M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728 (1969)

[4]

F. H. Stillinger, A topographic view of supercooled liquids and glass formation, Science 267(5206), 1935 (1995)

[5]

A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002)

[6]

F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Transport properties of glassforming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA 107(52), 22457 (2010)

[7]

S. Yip and M. P. Short, Multiscale materials modeling at the mesoscale, Nat. Mater. 12(9), 774 (2013)

[8]

C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267(5206), 1924 (1995)

[9]

J. C. Martinez-Garcia, J. Martinez-Garcia, S. J. Rzoska, and J. Hulliger, The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis, J. Chem. Phys. 137(6), 064501 (2012)

[10]

Advances in Chemical Physics, Water Polymorphism, edited by H. E. Stanley, series editor S. A. Rice, Wiley, New York, 2013

[11]

F. Mallamace, P. Baglioni, C. Corsaro, J. Spooren, H. E. Stanley, and S.H. Chen, Transport properties of supercooled confined water, Riv. Nuovo Cim. 34, 253 (2011)

[12]

F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, The thermodynam-ical response functions and the origin of the anomalous behavior of liquid water, Farad. Disc. 167, 95 (2013)

[13]

F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)

[14]

O. Mishima, Relationship between melting and amorphization of ice, Nature 384(6609), 546 (1996)

[15]

F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA 104(2), 424 (2007)

[16]

S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, The violation of the Stokes-Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA 103(35), 12974 (2006)

[17]

L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, Appearance of a fractional Stokes Einstein relation in water and a structural interpretation of its onset, Nat. Phys. 5(8), 565 (2009)

[18]

P. H. Poole, F. Sciortino, U. Essmann, and U. H. E. Stanley, Phase behaviour of metastable water, Nature 360(6402), 324 (1992)

[19]

L. Liu, S. H. Chen, A. Faraone, C. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)

[20]

L. Xu, P. Kumar, S. V. Buldyrev, S.H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid−liquid phase transition, Proc. Natl. Acad. Sci. USA 102(46), 16558 (2005)

[21]

J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106(47), 19780 (2009)

[22]

F. Mallamace, C. Corsaro, H. E. Stanley, and S. H. Chen, The role of the dynamic crossover temperature and the arrest in glass-forming fluids, Eur. Phys. J. E 34(9), 94 (2011)

[23]

T. Hecksher, A. I. Nielsen, N. B. Olsen, and J. C. Dyre, Little evidence for dynamic divergences in ultraviscous molecular liquids, Nat. Phys. 4(9), 737 (2008)

[24]

M. D. Ediger, C. A. Angell, and S. R. Nagel, Supercooled liquids and glasses, J. Phys. Chem. 100(31), 13200 (1996)

[25]

M. D. Ediger and P. Harrowell, Perspective: Supercooled liquids and glasses, J. Chem. Phys. 137(8), 080901 (2012)

[26]

V. Lubchenko and P. Wolynes, Theory of structural glasses and supercooled liquids, Annu. Rev. Phys. Chem. 58(1), 235 (2007)

[27]

B. Frick and D. Richter, The microscopic basis of the glass transition in polymers from neutron scattering studies, Science 267(5206), 1939 (1995)

[28]

V. N. Novikov and A. P. Sokolov, A correlation between lowenergy vibrational spectra and first sharp diffraction peak in chalcogenide glasses, Solid State Commun. 77(3), 243 (1991)

[29]

V. K. Malinovsky, V. N. Novikov, P. P. Parshin, A. P. Sokolov, and M. G. Zemlyanov, Universal form of the lowenergy (2 to 10 meV) vibrational spectrum of glasses, Europhys. Lett. 11(1), 43 (1990)

[30]

A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Comparison of Raman- and neutronscattering data for glass-forming systems, Phys. Rev. B 52(14), R9815 (1995)

[31]

J. Wuttke, J. Hernandez, G. Li, G. Coddens, H. Z. Cummins, F. Fujara, W. Petry, and H. Sillescu, Neutron and light scattering study of supercooled glycerol, Phys. Rev. Lett. 72(19), 3052 (1994)

[32]

B. Hehlen, E. Courtens, R. Vacher, A. Yamanaka, M. Kataoka, and K. Inoue, Hyper-Raman scattering observation of the Boson peak in vitreous silica, Phys. Rev. Lett. 84(23), 5355 (2000)

[33]

J. Wuttke, M. Kiebel, E. Bartsch, F. Fujara, W. Petry, and H. Sillescu, Relaxation and phonons in viscous and glassy orthoterphenyl by neutron scattering, Z. Phys. B 91(3), 357 (1993)

[34]

S. Grigera, V. Mart’ın-Mayor, G. Parisi, and P. Verrocchio, Vibrational spectrum of topologically disordered systems, Phys. Rev. Lett. 87(8), 085502 (2001)

[35]

A. P. Sokolov, R. Calemczuk, B. Salce, A. Kisliuk, D. Quitmann, and E. Duval, Low-temperature anomalies in strong and fragile glass formers, Phys. Rev. Lett. 78(12), 2405 (1997)

[36]

H. Shintani and H. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7(11), 870 (2008)

[37]

P. Kumar, K. T. Wikfeldt, D. Schlesinger, L. G. M. Pettersson, and H. E. Stanley, The Boson peak in supercooled water, Sci. Rep. 3, 1980 (2013)

[38]

S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, and F. Mallamace, Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory, J. Phys.: Condens. Matter 21(50), 504102 (2009)

[39]

Z. Wang, K. H. Liu, P. Le, M. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)

[40]

A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover, J. Chem. Phys. 141, 18C510 (2014).

[41]

K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, Spatially inhomogeneous bimodal inherent structure in simulated liquid water, Phys. Chem. Chem. Phys. 13(44), 19918 (2011)

[42]

L. Hong, B. Begen, A. Kisliuk, C. Alba-Simionesco, V. N. Novikov, and A. P. Sokolov, Pressure and density dependence of the Boson peak in polymers, Phys. Rev. B 78(13), 134201 (2008)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (466KB)

882

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/