The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis

Francesco Mallamace, Carmelo Corsaro, Domenico Mallamace, Zhe Wang, Sow-Hsin Chen

PDF(466 KB)
PDF(466 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 106103. DOI: 10.1007/s11467-015-0487-8
RESEARCH ARTICLE
RESEARCH ARTICLE

The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis

Author information +
History +

Abstract

The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the (P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the “low-density liquid” (LDL) and “high-density liquid” (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature TW as the (P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.

Keywords

supercooled water / liquid-liquid phase transition (LLPT) / inelastic neutron scattering

Cite this article

Download citation ▾
Francesco Mallamace, Carmelo Corsaro, Domenico Mallamace, Zhe Wang, Sow-Hsin Chen. The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis. Front. Phys., 2015, 10(5): 106103 https://doi.org/10.1007/s11467-015-0487-8

References

[1]
D. Kennedy, 125th Anniversary Issue: 125 outstanding problems in all of science: What is the nature of the glassy state, Science 309, 83 (2005)
[2]
M. D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem. 51(1), 99 (2000)
CrossRef ADS Google scholar
[3]
M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728 (1969)
CrossRef ADS Google scholar
[4]
F. H. Stillinger, A topographic view of supercooled liquids and glass formation, Science 267(5206), 1935 (1995)
CrossRef ADS Google scholar
[5]
A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002)
CrossRef ADS Google scholar
[6]
F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Transport properties of glassforming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA 107(52), 22457 (2010)
CrossRef ADS Google scholar
[7]
S. Yip and M. P. Short, Multiscale materials modeling at the mesoscale, Nat. Mater. 12(9), 774 (2013)
CrossRef ADS Google scholar
[8]
C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267(5206), 1924 (1995)
CrossRef ADS Google scholar
[9]
J. C. Martinez-Garcia, J. Martinez-Garcia, S. J. Rzoska, and J. Hulliger, The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis, J. Chem. Phys. 137(6), 064501 (2012)
CrossRef ADS Google scholar
[10]
Advances in Chemical Physics, Water Polymorphism, edited by H. E. Stanley, series editor S. A. Rice, Wiley, New York, 2013
[11]
F. Mallamace, P. Baglioni, C. Corsaro, J. Spooren, H. E. Stanley, and S.H. Chen, Transport properties of supercooled confined water, Riv. Nuovo Cim. 34, 253 (2011)
[12]
F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, The thermodynam-ical response functions and the origin of the anomalous behavior of liquid water, Farad. Disc. 167, 95 (2013)
[13]
F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)
CrossRef ADS Google scholar
[14]
O. Mishima, Relationship between melting and amorphization of ice, Nature 384(6609), 546 (1996)
CrossRef ADS Google scholar
[15]
F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA 104(2), 424 (2007)
CrossRef ADS Google scholar
[16]
S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, The violation of the Stokes-Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA 103(35), 12974 (2006)
CrossRef ADS Google scholar
[17]
L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, Appearance of a fractional Stokes Einstein relation in water and a structural interpretation of its onset, Nat. Phys. 5(8), 565 (2009)
CrossRef ADS Google scholar
[18]
P. H. Poole, F. Sciortino, U. Essmann, and U. H. E. Stanley, Phase behaviour of metastable water, Nature 360(6402), 324 (1992)
CrossRef ADS Google scholar
[19]
L. Liu, S. H. Chen, A. Faraone, C. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)
CrossRef ADS Google scholar
[20]
L. Xu, P. Kumar, S. V. Buldyrev, S.H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid−liquid phase transition, Proc. Natl. Acad. Sci. USA 102(46), 16558 (2005)
CrossRef ADS Google scholar
[21]
J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106(47), 19780 (2009)
CrossRef ADS Google scholar
[22]
F. Mallamace, C. Corsaro, H. E. Stanley, and S. H. Chen, The role of the dynamic crossover temperature and the arrest in glass-forming fluids, Eur. Phys. J. E 34(9), 94 (2011)
CrossRef ADS Google scholar
[23]
T. Hecksher, A. I. Nielsen, N. B. Olsen, and J. C. Dyre, Little evidence for dynamic divergences in ultraviscous molecular liquids, Nat. Phys. 4(9), 737 (2008)
CrossRef ADS Google scholar
[24]
M. D. Ediger, C. A. Angell, and S. R. Nagel, Supercooled liquids and glasses, J. Phys. Chem. 100(31), 13200 (1996)
CrossRef ADS Google scholar
[25]
M. D. Ediger and P. Harrowell, Perspective: Supercooled liquids and glasses, J. Chem. Phys. 137(8), 080901 (2012)
CrossRef ADS Google scholar
[26]
V. Lubchenko and P. Wolynes, Theory of structural glasses and supercooled liquids, Annu. Rev. Phys. Chem. 58(1), 235 (2007)
CrossRef ADS Google scholar
[27]
B. Frick and D. Richter, The microscopic basis of the glass transition in polymers from neutron scattering studies, Science 267(5206), 1939 (1995)
CrossRef ADS Google scholar
[28]
V. N. Novikov and A. P. Sokolov, A correlation between lowenergy vibrational spectra and first sharp diffraction peak in chalcogenide glasses, Solid State Commun. 77(3), 243 (1991)
CrossRef ADS Google scholar
[29]
V. K. Malinovsky, V. N. Novikov, P. P. Parshin, A. P. Sokolov, and M. G. Zemlyanov, Universal form of the lowenergy (2 to 10 meV) vibrational spectrum of glasses, Europhys. Lett. 11(1), 43 (1990)
CrossRef ADS Google scholar
[30]
A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Comparison of Raman- and neutronscattering data for glass-forming systems, Phys. Rev. B 52(14), R9815 (1995)
CrossRef ADS Google scholar
[31]
J. Wuttke, J. Hernandez, G. Li, G. Coddens, H. Z. Cummins, F. Fujara, W. Petry, and H. Sillescu, Neutron and light scattering study of supercooled glycerol, Phys. Rev. Lett. 72(19), 3052 (1994)
CrossRef ADS Google scholar
[32]
B. Hehlen, E. Courtens, R. Vacher, A. Yamanaka, M. Kataoka, and K. Inoue, Hyper-Raman scattering observation of the Boson peak in vitreous silica, Phys. Rev. Lett. 84(23), 5355 (2000)
CrossRef ADS Google scholar
[33]
J. Wuttke, M. Kiebel, E. Bartsch, F. Fujara, W. Petry, and H. Sillescu, Relaxation and phonons in viscous and glassy orthoterphenyl by neutron scattering, Z. Phys. B 91(3), 357 (1993)
CrossRef ADS Google scholar
[34]
S. Grigera, V. Mart’ın-Mayor, G. Parisi, and P. Verrocchio, Vibrational spectrum of topologically disordered systems, Phys. Rev. Lett. 87(8), 085502 (2001)
CrossRef ADS Google scholar
[35]
A. P. Sokolov, R. Calemczuk, B. Salce, A. Kisliuk, D. Quitmann, and E. Duval, Low-temperature anomalies in strong and fragile glass formers, Phys. Rev. Lett. 78(12), 2405 (1997)
CrossRef ADS Google scholar
[36]
H. Shintani and H. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7(11), 870 (2008)
CrossRef ADS Google scholar
[37]
P. Kumar, K. T. Wikfeldt, D. Schlesinger, L. G. M. Pettersson, and H. E. Stanley, The Boson peak in supercooled water, Sci. Rep. 3, 1980 (2013)
CrossRef ADS Google scholar
[38]
S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, and F. Mallamace, Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory, J. Phys.: Condens. Matter 21(50), 504102 (2009)
CrossRef ADS Google scholar
[39]
Z. Wang, K. H. Liu, P. Le, M. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)
CrossRef ADS Google scholar
[40]
A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover, J. Chem. Phys. 141, 18C510 (2014).
CrossRef ADS Google scholar
[41]
K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, Spatially inhomogeneous bimodal inherent structure in simulated liquid water, Phys. Chem. Chem. Phys. 13(44), 19918 (2011)
CrossRef ADS Google scholar
[42]
L. Hong, B. Begen, A. Kisliuk, C. Alba-Simionesco, V. N. Novikov, and A. P. Sokolov, Pressure and density dependence of the Boson peak in polymers, Phys. Rev. B 78(13), 134201 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(466 KB)

Accesses

Citations

Detail

Sections
Recommended

/