Shape coexistence and α-decay chains of 293Lv

Li(李兆玺)Zhao-Xi , Zhang(张振华)Zhen-Hua , Zhao(赵鹏巍)Peng-Wei

Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 102101

PDF (591KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 102101 DOI: 10.1007/s11467-015-0474-0
RESEARCH ARTICLE

Shape coexistence and α-decay chains of 293Lv

Author information +
History +
PDF (591KB)

Abstract

Two recently observed 293Lv (Z = 116) α-decay chains [Eur. Phys. J. A 48, 62 (2012)] are investigated in the framework of covariant density functional theory with PC-PK1, where the pairing correlations are treated by the Bardeen–Cooper–Schrieffer method with a density-independent zerorange force. From the calculated potential energy curves, it is found that two minima always occur, with one having an almost spherical shape and the other exhibiting a large deformed prolate shape. Originating from the ground state and the shape-isomeric state of 293Lv, the two observed α-decay chains are constructed and the calculated Qαvalues are found to be in good agreement with the data.

Graphical abstract

Keywords

shape coexistence / α decay / 293Lv / covariant density functional theory

Cite this article

Download citation ▾
Li(李兆玺)Zhao-Xi, Zhang(张振华)Zhen-Hua, Zhao(赵鹏巍)Peng-Wei. Shape coexistence and α-decay chains of 293Lv. Front. Phys., 2015, 10(3): 102101 DOI:10.1007/s11467-015-0474-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. D. Myers and W. J. Swiatecki, Nuclear masses and deformations, Nucl. Phys.81(2), 1(1966)

[2]

A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Closed shells for Z>82 and N>126 in a diffuse potential well, Phys. Lett.22(4), 500(1966)

[3]

H. Meldner, Predictions of new magic regions and masses for super-heavy nuclei from calculations with realistic shell model single particle Hamiltonians, Ark. Fys.36, 593 (1967)

[4]

S. G. Nilsson, J. R. Nix, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, and P. Möller, On the spontaneous fission of nuclei with Z near 114 and N near 184, Nucl.Phys. A115(3), 545(1968)

[5]

S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I. L. Lamm, P. Möller, and B. Nilsson, On the nuclear structure and stability of heavy and superheavy elements, Nucl. Phys. A131(1), 1(1969)

[6]

S. G. Nilsson, S. G. Thompson, and C. F. Tsang, Stability of superheavy nuclei and their possible occurrence in nature, Phys. Lett. B28(7), 458(1969)

[7]

U. Mosel and W. Greiner, On the stability of superheavy nuclei against fission, Z. Phys.222(3), 261(1969)

[8]

J. Grumann, U. Mosel, B. Fink, and W. Greiner, Investigation of the stability of superheavy nuclei around Z = 114 and Z = 164, Z. Phys.228(5), 371(1969)

[9]

S. Hofmann and G. Münzenberg, The discovery of the heaviest elements, Rev. Mod. Phys.72(3), 733(2000)

[10]

Yu. Ts. Oganessian, Heaviest nuclei from 48Ca-induced reactions, J. Phys. G34(4), R165(2007)

[11]

Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, and P. A. Wilk, Synthesis of a new element with atomic number Z = 117, Phys. Rev. Lett.104(14), 142502(2010)

[12]

K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. I. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, H. S. Xu, T. Yamaguchi, A. Yoneda, A. Yoshida, and Y. L. Zhao, Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn, n)278 113, J. Phys. Soc. Jpn.73(10), 2593(2004)

[13]

K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. I. Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, H. Kikunaga, H. Kudo, T. Ohnishi, A. Ozawa, N. Sato, T. Suda, K. Sueki, F. Tokanai, T. Yamaguchi, A. Yoneda, and A. Yoshida, Observation of second decay chain from 278113, J. Phys. Soc. Jpn.76(4), 045001(2007)

[14]

A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys.58(1), 292(2007)

[15]

M. Bender, P. H. Heenen, and P. G. Reinhard, Selfconsistent mean-field models for nuclear structure, Rev. Mod. Phys.75(1), 121(2003)

[16]

G. A. Lalazissis, M. M. Sharma, P. Ring, and Y. K. Gambhir, Superheavy nuclei in the relativistic mean-field theory, Nucl. Phys. A608(2), 202(1996)

[17]

J. Meng and N. Takigawa, Structure of superheavy elements suggested in the reaction of 86Kr with 208Pb, Phys. Rev. C61(6), 064319(2000)

[18]

Z. Z. Ren and H. Toki, Superdeformation in the newly discovered superheavy elements, Nucl. Phys. A689(3−4), 691 (2001)

[19]

M. Bender, K. Rutz, P. G. Reinhard, J. A. Maruhn, and W. Greiner, Shell structure of superheavy nuclei in selfconsistent mean-field models, Phys. Rev. C60(3), 034304(1999)

[20]

A. T. Kruppa, M. Bender, W. Nazarewicz, P. G. Reinhard, T. Vertse, and S. Ćwiok, Shell corrections of superheavy nuclei in self-consistent calculations, Phys. Rev. C61(3), 034313(2000)

[21]

W. Zhang, S. S. Zhang, S. Q. Zhang, and J. Meng, Shell correction at the saddle point for superheavy nucleus, Chin. Phys. Lett.20(10), 1694(2003)

[22]

W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Magic numbers for superheavy nuclei in relativistic continuum Hartree–Bogoliubov theory, Nucl. Phys. A753(1−2), 106 (2005)

[23]

W. H. Long, J. Meng, and S. G. Zhou, Structure of the new nuclide 259Db and its α-decay daughter nuclei, Phys. Rev. C65(4), 047306(2002)

[24]

L. S. Geng, H. Toki, and J. Meng, α-decay chains of 115173288 and 115172287 in the relativistic mean field theory, Phys. Rev. C68, 061303(R) (2003)

[25]

T. Bürvenich, M. Bender, J. A. Maruhn, and P. G. Reinhard, Systematics of fission barriers in superheavy elements, Phys. Rev. C69(1), 014307(2004)

[26]

Z. P. Li, T. Nikšić, D. Vretenar, P. Ring, and J. Meng, Relativistic energy density functionals: Low-energy collective states of 240Pu and 166Er, Phys. Rev. C81(6), 064321(2010)

[27]

B. N. Lu, E. G. Zhao, and S. G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C85(1), 011301(R) (2012)

[28]

H. Abusara, A. V. Afanasjev, and P. Ring, Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei, Phys. Rev. C85(2), 024314(2012)

[29]

M. Warda and J. L. Egido, Fission half-lives of superheavy nuclei in a microscopic approach, Phys. Rev. C86(1), 014322(2012)

[30]

V. Prassa, T. Nikšić, G. A. Lalazissis, and D. Vretenar, Relativistic energy density functional description of shape transitions in superheavy nuclei, Phys. Rev. C86(2), 024317(2012)

[31]

G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Fusion cross sections for superheavy nuclei in the dinuclear system concept, Nucl. Phys. A633(3), 409(1998)

[32]

Z. Q. Feng, G. M. Jin, J. Q. Li, and W. Scheid, Formation of superheavy nuclei in cold fusion reactions, Phys. Rev. C76(4), 044606(2007)

[33]

E. G. Zhao, N. Wang, Z. Q. Feng, J. Q. Li, S. G. Zhou, and W. Scheid, The isotopic and nuclear orientation effects on the production of super-heavy elements, Int. J. Mod. Phys. E17(09), 1937(2008)

[34]

A. K. Nasirov, G. Giardina, G. Mandaglio, M. Manganaro, F. Hanappe, S. Heinz, S. Hofmann, A. I. Muminov, and W. Scheid, Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z = 120 element, Phys. Rev. C79(2), 024606(2009)

[35]

J. Q. Li, Z. Q. Feng, Z. G. Gan, X. H. Zhou, H. F. Zhang, and W. Scheid, Production of superheavy nuclei in massive fusion reactions, Nucl. Phys. A834(1−4), 353c (2010)

[36]

Z. Q. Feng, G. M. Jin, and J. Q. Li, Dynamics in production of superheavy nuclei in low-energy heavy-ion collision, Nucl. Phys. Rev.28, 1 (2011)

[37]

N. Wang, E. G. Zhao, W. Scheid, and S. G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with transuranium targets, Phys. Rev. C85(4), 041601(R) (2012)

[38]

Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Fluctuation dissipation model for synthesis of superheavy elements, Phys. Rev. C59(2), 796(1999)

[39]

J. D. Bao and Y. Z. Zhuo, Investigation on anomalous diffusion for nuclear fusion reactions, Phys. Rev. C67(6), 064606(2003)

[40]

W. J. Światecki, K. Siwek-Wilczyńska, and J. Wilczyński, Fusion by diffusion (II): Synthesis of transfermium elements in cold fusion reactions, Phys. Rev. C71(1), 014602(2005)

[41]

Z. H. Liu and J. D. Bao, Optimal reaction for synthesis of superheavy element 117, Phys. Rev. C80(3), 034601(2009)

[42]

K. Siwek-Wilczyńska, T. Cap, M. Kowal, A. Sobiczewski, and J. Wilczyński, Predictions of the fusion-by-diffusion model for the synthesis cross sections of Z = 114–120 elements based on macroscopic-microscopic fission barriers, Phys. Rev. C86(1), 014611(2012)

[43]

N. Wang, X. Z. Wu, Z. X. Li, M. Liu, and W. Scheid, Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei, Phys. Rev. C74(4), 044604(2006)

[44]

B. A. Bian, F. S. Zhang, and H. Y. Zhou, Entrance channel mass asymmetry dependence of compound nucleus formation, Phys. Lett. B665(4), 314(2008)

[45]

C. W. Shen, G. Kosenko, and Y. Abe, Two-step model of fusion for the synthesis of superheavy elements, Phys. Rev. C66(6), 061602(R) (2002)

[46]

V. I. Zagrebaev, Synthesis of superheavy nuclei: Nucleon collectivization as a mechanism for compound nucleus formation, Phys. Rev. C64(3), 034606(2001)

[47]

V. I. Zagrebaev and W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions, Phys. Rev. C78(3), 034610(2008)0

[48]

Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, and R. W. Lougheed, Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)292−x 114 and 245Cm(48Ca,xn)293−x 116, Phys. Rev. C69(5), 054607(2004)

[49]

Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A.Wilk, R. W. Lougheed, R. I. Il’kaev, and S. P. Vesnovskii, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca, Phys. Rev. C70, 064609 (2004)

[50]

S. K. Singh, M. Ikram, and S. K. Patra, Ground state properties and bubble structure of synthesized superheavy nuclei, Int. J. Mod. Phys. E22(01), 1350001(2013)

[51]

M. Bhattacharya and G. Gangopadhyay, α-decay lifetime in superheavy nuclei with A>282, Phys. Rev. C77(4), 047302(2008)

[52]

H. F. Zhang, W. Zuo, J. Q. Li, and G. Royer, α decay halflives of new superheavy nuclei within a generalized liquid drop model, Phys. Rev. C74(1), 017304(2006)

[53]

A. Bhagwat, X. Viñas, M. Centelles, P. Schuck, and R. Wyss, Microscopic-macroscopic approach for binding energies with the Wigner–Kirkwood method (II): Deformed nuclei, Phys. Rev. C86(4), 044316(2012)

[54]

A. N. Kuzmina, G. G. Adamian, and N. V. Antonenko, Role of quasiparticle structure in α decays of the heaviest nuclei, Phys. Rev. C85(2), 027308(2012)

[55]

Y. B. Qian, Z. Z. Ren, and D. D. Ni, Calculations of α- decay half-lives for heavy and superheavy nuclei, Phys. Rev. C83(4), 044317(2011)

[56]

D. D. Ni and Z. Z. Ren, Microscopic calculation of α-decay half-lives within the cluster model, Nucl. Phys. A825(3−4), 145 (2009)

[57]

D. D. Ni and Z. Z. Ren, Calculations of new α-decay data within the generalized density-dependent cluster model, J. Phys. G37(10), 105107(2010)

[58]

J. M. Dong, W. Zuo, J. Z. Gu, Y. Z. Wang, and B. B. Peng, α-decay half-lives and Qα values of superheavy nuclei, Phys. Rev. C81(6), 064309(2010)

[59]

S. Hofmann, S. Heinz, R. Mann, J. Maurer, J. Khuyagbaatar, D. Ackermann, S. Antalic, W. Barth, M. Block, H. G. Burkhard, V. F. Comas, L. Dahl, K. Eberhardt, J. Gostic, R. A. Henderson, J. A. Heredia, F. P. Hesberger, J. M. Kenneally, B. Kindler, I. Kojouharov, J. V. Kratz, R. Lang, M. Leino, B. Lommel, K. J. Moody, G. Münzenberg, S. L. Nelson, K. Nishio, A. G. Popeko, J. Runke, S. Saro, D. A. Shaughnessy, M. A. Stoyer, P. Thörle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, P. A. Wilk, and A. V. Yeremin, The reaction 48Ca+ 248Cm→ 296116 studied at the GSI-SHIP, Eur. Phys. J. A48(5), 62(2012)

[60]

F. R. Xu, E. G. Zhao, R. Wyss, and P. M.Walker, Enhanced stability of superheavy nuclei due to high-spin isomerism, Phys. Rev. Lett.92(25), 252501(2004)

[61]

D. S. Delion, R. J. Liotta, and R. Wyss, α decay of highspin isomers in superheavy nuclei, Phys. Rev. C76(4), 044301(2007)

[62]

P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys.37, 193 (1996)

[63]

D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Relativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep.409(3−4), 101 (2005)

[64]

J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys.57(2), 470(2006)

[65]

T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond, Prog. Part. Nucl. Phys.66(3), 519(2011)

[66]

J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys.8(1), 55(2013)

[67]

P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C82(5), 054319(2010)

[68]

P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B699(3), 181(2011)

[69]

P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett.107(12), 122501(2011)

[70]

P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Covariant density functional theory for antimagnetic rotation, Phys. Rev. C85(5), 054310(2012)

[71]

J. M. Yao, J. Meng, P. Ring, Z. X. Li, Z. P. Li, and K. Hagino, Microscopic description of quantum shape fluctuation in C isotopes, Phys. Rev. C84(2), 024306(2011)

[72]

Z. P. Li, C. Y. Li, J. Xiang, J. M. Yao, and J. Meng, Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian, Phys. Lett. B717(4−5), 470 (2012)

[73]

B. H. Sun, P. W. Zhao, and J. Meng, Mass prediction of proton-rich nuclides with the Coulomb displacement energies in the relativistic point-coupling model, Sci. China Ser. G54, 210 (2011)

[74]

P. W. Zhao, L. S. Song, B. H. Sun, H. Geissel, and J. Meng, Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa, Phys. Rev. C86(6), 064324(2012)

[75]

Q. S. Zhang, Z. M. Niu, Z. P. Li, J. M. Yao, and J. Meng, Global dynamical correlation energies in covariant density functional theory: Cranking approximation, Front. Phys.9(4), 529(2014)

[76]

W. Zhang, Z. P. Li, and S. Q. Zhang, Description of α-decay chains for 293,294117 within covariant density functional theory, Phys. Rev. C88(5), 054324(2013)

[77]

S. J. Krieger, P. Bonche, H. Flocard, P. Quentin, and M. S. Weiss, An improved pairing interaction for mean field calculations using Skyrme potentials, Nucl. Phys. A517(2), 275(1990)

[78]

M. Bender, K. Rutz, P. G. Reinhard, and J. A. Maruhn, Pairing gaps from nuclear mean-field models, Eur. Phys. J. A8(1), 59(2000)

[79]

P. Ring and P. Schuck, The Nuclear Many-Body Problem, Berlin: Springer-Verlag, 1980

[80]

M. Bender, K. Rutz, P. G. Reinhard, and J. A. Maruhn, Consequences of the center-of-mass correction in nuclear mean-field models, Eur. Phys. J. A7(4), 467(2000)

[81]

P. W. Zhao, B. Y. Sun, and J. Meng, Deformation effect on the center-of-mass correction energy in nuclei ranging from Oxygen to Calcium, Chin. Phys. Lett.26(11), 112102(2009)

[82]

P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei, Comput. Phys. Commun.105(1), 77(1997)

[83]

J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Possible existence of multiple chiral doublets in 106Rh, Phys. Rev. C73(3), 037303(2006)

[84]

S. Ćwiok, W. Nazarewicz, and P. H. Heenen, Structure of odd-N superheavy elements, Phys. Rev. Lett.83(6), 1108(1999)

[85]

L. S. Geng, H. Toki, and J. Meng, Masses, deformations and charge radii—Nuclear ground-state properties in the relativistic mean field model, Prog. Theor. Phys.113(4), 785(2005)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (591KB)

1058

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/