A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect

Wang Rui-Feng(王瑞峰)

PDF(180 KB)
PDF(180 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 100305. DOI: 10.1007/s11467-015-0470-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect

Author information +
History +

Abstract

Most studies on the magnetic Aharonov–Bohm (A–B) effect focus on the action exerted by the magnetic flux on the electron beam, but neglect the back-action exerted by the electron beam on the magnetic flux. This paper focuses on the latter, which is the electromotive force ΔU across the solenoid induced by the time-dependent magnetic field of the electron beam. Based on the backaction analysis, we observe that the magnetic A–B effect arises owing to the interaction energy between the magnetic field of the electron beam and the magnetic field of the solenoid. We also demonstrate that the interpretation attributing the magnetic A–B effect to the vector potential violates the uncertainty principle.

Graphical abstract

Keywords

Aharonov–Bohm effect / uncertainty principle / superconductivity / superconducting quantum interference device (SQUID)

Cite this article

Download citation ▾
Wang Rui-Feng(王瑞峰). A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect. Front. Phys., 2015, 10(3): 100305 https://doi.org/10.1007/s11467-015-0470-4

References

[1]
P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1958
[2]
L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory), Beijing World Publishing Corporation, 1999
[3]
Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev.115(3), 485 (1959)
CrossRef ADS Google scholar
[4]
R. G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux, Phys. Rev. Lett.5(1), 3 (1960)
CrossRef ADS Google scholar
[5]
A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett.56(8), 792 (1986)
CrossRef ADS Google scholar
[6]
Y. Aharonov and D. Bohm, Further considerations on electromagnetic potentials in the quantum theory, Phys. Rev.123(4), 1511 (1961)
CrossRef ADS Google scholar
[7]
M. Peskin and A. Tonomura, The Aharonov–Bohm effect, Berlin: Springer-Verlag, 1989
CrossRef ADS Google scholar
[8]
E. L. Feinberg, On the “special role” of the electromagnetic potentials in quantum mechanics, Sov. Phys. Usp.5(5), 753 (1963)
CrossRef ADS Google scholar
[9]
H. Erlichson, Aharonov–Bohm effect — Quantum effects on charged particles in field-free regions, Am. J. Phys.38(2), 162 (1970)
CrossRef ADS Google scholar
[10]
R. F. Wang, An experimental scheme to verify the dynamics of the Aharonov–Bohm effect, Chin. Phys. B18(8), 3226 (2009)
CrossRef ADS Google scholar
[11]
R. F. Wang, Influence of induced charges in the electric Aharonov–Bohm effect, arXiv: 1409.6793, 2014
[12]
W. H. Furry and N. F. Ramsey, Significance of potentials in quantum theory, Phys. Rev.118(3), 623 (1960)
CrossRef ADS Google scholar
[13]
L. Vaidman, Role of potentials in the Aharonov–Bohm effect, Phys. Rev. A86(4), 040101 (2012)
CrossRef ADS Google scholar
[14]
V. B. Braginsky and F. Y. Khalili, Quantum Measurement, Cambridge University Press, 1992
CrossRef ADS Google scholar
[15]
J. von Neumann, Mathematical Foundation of Quantum Mechanics, translated by R. T. Beyer, Princeton University Press, 1955
[16]
B. Liebowitz, Significance of the Aharonov–Bohm effect, Nuovo Cim.38(2), 932 (1965)
CrossRef ADS Google scholar
[17]
T. H. Boyer, Does the Aharonov–Bohm effect exist? Found. Phys.30(6), 893 (2000)
CrossRef ADS Google scholar
[18]
A. Caprez, B. Barwick, and H. Batelaan, Macroscopic test of the Aharonov–Bohm effect, Phys. Rev. Lett.99(21), 210401 (2007)
CrossRef ADS Google scholar
[19]
M. Tinkham, Introduction to Superconductivity, New York: McGraw-Hill, Inc., 1996
[20]
Deaver and W. M. Fairbank, Experimental evidence for quantized flux in superconducting cylinders, Phys. Rev. Lett.7(2), 43 (1961)
CrossRef ADS Google scholar
[21]
N. Byers and C. N. Yang, Theoretical considerations concerning quantized magnetic flux in superconducting cylinders, Phys. Rev. Lett.7(2), 46 1961)
CrossRef ADS Google scholar
[22]
A. Tonomura, Direct observation of thitherto unobservable quantum phenomena by using electrons, Proc. Natl. Acad. Sci. USA102(42), 14952 (2005)
CrossRef ADS Google scholar
[23]
A. Tonomura, Quantum phenomena visualized by electron waves, Int. J. Mod. Phys. B21(32), 5291 (2007)
CrossRef ADS Google scholar
[24]
A. Tonomura, Applications of electron holography, Rev. Mod. Phys.59(3), 639 (1987)
CrossRef ADS Google scholar
[25]
M. A. Biondi, A. T. Forrester, M. P. Garfunkel, and C. B. Satterthwaite, Experimental evidence for an energy gap in superconductors, Rev. Mod. Phys.30, 1109 (1958)
CrossRef ADS Google scholar
[26]
W. H. Louisell, Quantum Statistical Properties of Radiation, John Wiley & Sons, Inc., 1990

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(180 KB)

Accesses

Citations

Detail

Sections
Recommended

/