Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme
Ji Sai(季赛), Wang Fang(王芳), Liu Wen-Jie(刘文杰), Yuan Xiao-Min(袁晓敏)
Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme
Recently, Li et al. presented a two-party quantum private comparison scheme using Greenberger–Horne–Zeilinger (GHZ) states and error-correcting code (ECC) [Int. J. Theor. Phys. 52, 2818 (2013)], claiming it is fault-tolerant and could be performed in a non-ideal scenario. However, there exists a fatal loophole in their private comparison scheme under a special attack, namely the twice-Hadamard-CNOT attack. Specifically, a malicious party may intercept the other party’s particles and execute Hadamard operations on the intercepted particles as well as on his or her own particles. Then, the malicious party could sequentially perform a controlled-NOT (CNOT) operation between intercepted particles and the auxiliary particles, as well as between his or her own particles and the auxiliary particles prepared in advance. By measuring the auxiliary particles, the secret input will be revealed to the malicious party without being detected. For resisting this special attack, a feasible improved scheme is proposed by introducing a permutation operator before the third party (TP) sends the particle sequences to each participant.
quantum private comparison / GHZ state / twice-Hadamard-CNOT attack / improved scheme
[1] |
C. H. Bennett and G. Brassard, Quantum cryptography: Public-key distribution and coin tossing, In: Proceedings of IEEE International conference on Computers,Systems and Signal Processing, IEEE Press, New York, Bangalore, 1984, pp 175-179
|
[2] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett.67(6), 661 (1991)
CrossRef
ADS
Google scholar
|
[3] |
L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys.9(5), 613 (2014)
CrossRef
ADS
Google scholar
|
[4] |
G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key distribution scheme, Phys. Rev. A65(3), 032302 (2002)
CrossRef
ADS
Google scholar
|
[5] |
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A68(4), 042317 (2003)
CrossRef
ADS
Google scholar
|
[6] |
F. G. Deng and G. L. Long, Secure direct communication with a quantum onetime pad, Phys. Rev. A69(5), 052319 (2004)
CrossRef
ADS
Google scholar
|
[7] |
G. L. Long, F. G. Deng, C. Wang, K. Wen, W. Y. Wang, and X. H. Li, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China2(3), 251 (2007)
CrossRef
ADS
Google scholar
|
[8] |
W. J. Liu, H. W. Chen, Z. Q. Li, and Z. H. Liu, Efficient quantum secure direct communication with authentication, Chin. Phys. Lett.25(7), 2354 (2008)
CrossRef
ADS
Google scholar
|
[9] |
W. J. Liu, H. W. Chen, T. H. Ma, Z. Q. Li, Z. H. Liu, and W. B. Hu, An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication, Chinese Phys. B18(10), 4105 (2009)
CrossRef
ADS
Google scholar
|
[10] |
Y. Chang, C. Xu, S. Zhang, and L. Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad, Chin. Sci. Bull.59(21), 2541 (2014)
CrossRef
ADS
Google scholar
|
[11] |
R. Cleve, D. Gottesman, and H. K. Lo, How to share a quantum secret, Phys. Rev. Lett.83(3), 648 (1999)
CrossRef
ADS
Google scholar
|
[12] |
M. Hillery, V. Bužek, A. Berthiaume, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A59(3), 1829 (1999)
CrossRef
ADS
Google scholar
|
[13] |
J. Xu, H. W. Chen, W. J. Liu, and Z. H. Liu, Selection of unitary operations in quantum secret sharing without entanglement, Sci. China Inf. Sci.54(9), 1837 (2011)
CrossRef
ADS
Google scholar
|
[14] |
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature390(6660), 575 (1997)
CrossRef
ADS
Google scholar
|
[15] |
A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Unconditional quantum teleportation, Science282(5389), 706 (1998)
CrossRef
ADS
Google scholar
|
[16] |
A. Vidiella-Barranco and L. F. M. Borelli, Continuous variable quantum key distribution using polarized coherent states, Int. J. Mod. Phys. B20, 1287 (2009)
|
[17] |
C. D. Xie, J. Zhang, Q. Pan, X. J. Jia, and K. C. Peng, Continuous variable quantum communication with bright entangled optical beams, Front. Phys. China1(4), 383 (2006)
CrossRef
ADS
Google scholar
|
[18] |
Y. G. Yang and Q. Y. Wen, An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement, J. Phys. A: Math. Theor.42(5), 055305 (2009)
CrossRef
ADS
Google scholar
|
[19] |
X. B. Chen, G. Xu, X. X. Niu, Q. Y. Wen, and Y. X. Yang, An efficient protocol for the private comparison of equal information based on the triplet entangled state and singleparticle measurement, Opt. Commun.283(7), 1561 (2010)
CrossRef
ADS
Google scholar
|
[20] |
H. Y. Jia, Q. Y. Wen, B. Y. Li, and F. Gao, Quantum private comparison using genuine four-particle entangled states, Int. J. Theor. Phys.51(4), 1187 (2012)
CrossRef
ADS
Google scholar
|
[21] |
W. Liu and Y. B. Wang, Quantum private comparison based on GHZ entangled states, Int. J. Theor. Phys.51(11), 3596 (2012)
CrossRef
ADS
Google scholar
|
[22] |
H. Y. Tseng, J. Lin, and T. Hwang, New quantum private comparison protocol using EPR pairs, Quantum Inf. Process.11(2), 373 (2012)
CrossRef
ADS
Google scholar
|
[23] |
W. Huang, Q. Y. Wen, B. Liu, F. Gao, and Y. Sun, Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels, Sci. China Phys. Mech.56(9), 1670 (2013)
CrossRef
ADS
Google scholar
|
[24] |
W. J. Liu, C. Liu, Z. H. Liu, J. F. Liu, and H. T. Geng, Same initial states attack in Yang et al.’s quantum private comparison protocol and the improvement, Int. J. Theor. Phys.53(1), 271 (2014)
CrossRef
ADS
Google scholar
|
[25] |
W. J. Liu, C. Liu, H. W. Chen, Z. H. Liu, M. X. Yuan, and J. S. Lu, Improvement on “an efficient protocol for the quantum private comparison of equality with W state”, Int. J. Quantum Inf.12(01), 1450001 (2014)
CrossRef
ADS
Google scholar
|
[26] |
J. Lin, C. W. Yang, and T. Hwang, Quantum private comparison of equality protocol without a third party, Quantum Inf. Process.13(2), 239 (2014)
CrossRef
ADS
Google scholar
|
[27] |
W. J. Liu, C. Liu, H. W. Chen, Z. Q. Li, and Z. H. Liu, Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states, Commun. Theor. Phys.62(2), 210 (2014)
CrossRef
ADS
Google scholar
|
[28] |
Y. B. Li, T. Y. Wang, H. Y. Chen, M. D. Li, and Y. T. Yang, Fault-tolerate quantum private comparison based on GHZ states and ECC, Int. J. Theor. Phys.52(8), 2818 (2013)
CrossRef
ADS
Google scholar
|
[29] |
W. J. Liu, C. Liu, H. B. Wang, and T. T. Jia, Quantum private comparison: A review, IETE Tech. Rev.30(5), 439 (2013)
CrossRef
ADS
Google scholar
|
[30] |
C. Y. Lin and T. Hwang, CNOT extraction attack on “quantum asymmetric cryptography with symmetric keys”, Sci. China Phys. Mech.57(5), 1001 (2014)
CrossRef
ADS
Google scholar
|
[31] |
Z. Y. Tong, P. Liao, and L. M. Kuang, Quantum repeaters based on CNOT gate under decoherence, Front. Phys. China2(4), 389 (2007)
CrossRef
ADS
Google scholar
|
[32] |
J. Lin, H. Y. Tseng, and T. Hwang, Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements, Opt. Commun.284(9), 2412 (2011)
CrossRef
ADS
Google scholar
|
[33] |
W. W. Zhang and K. J. Zhang, Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party, Quantum Inf. Process.12(5), 1981 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |