Optomechanically induced amplification and perfect transparency in double-cavity optomechanics

Xiao-Bo Yan , W. Z. Jia , Yong Li , Jin-Hui Wu , Xian-Li Li , Hai-Wei Mu

Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 104202

PDF (275KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 104202 DOI: 10.1007/s11467-015-0456-2
RESEARCH ARTICLE

Optomechanically induced amplification and perfect transparency in double-cavity optomechanics

Author information +
History +
PDF (275KB)

Abstract

We study optomechanically induced amplification and perfect transparency in a double-cavity optomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive the system, optomechanically induced amplification of a probe laser can occur. In addition, perfect optomechanically induced transparency, which is robust to mechanical dissipation, can be realized by the same type of driving. These results indicate important progress toward signal amplification, light storage, fast light, and slow light in quantum information processes.

Graphical abstract

Keywords

optomechanics / optomechanically induced amplification / optomechanically induced transparency

Cite this article

Download citation ▾
Xiao-Bo Yan, W. Z. Jia, Yong Li, Jin-Hui Wu, Xian-Li Li, Hai-Wei Mu. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front. Phys., 2015, 10(3): 104202 DOI:10.1007/s11467-015-0456-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science321(5893), 1172 (2008)

[2]

F. Marquardt and S. M. Girvin, Optomechanics, Physics2, 40 (2009)

[3]

P. Verlot, A. Tavernarakis, T. Briant, P. F. Cohadon, and A. Heidmann, Back-action amplification and quantum limits in optomechanical measurements, Phys. Rev. Lett.104(13), 133602 (2010)

[4]

S. Mahajan, T. Kumar, A. B. Bhattacherjee, and ManMohan, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose–Einstein condensate, Phys. Rev. A87(1), 013621 (2013)

[5]

Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys.8(5), 475 (2013)

[6]

S. Gigan, H. Böhm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Self-cooling of a micromirror by radiation pressure, Nature444(7115), 67 (2006)

[7]

D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature444(7115), 75 (2006)

[8]

G. S. Agarwal and Sumei Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A81, 041803(R) (2010)

[9]

T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express15(25), 17172 (2007)

[10]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature421(6926), 925 (2003)

[11]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys.4(5), 415 (2008)

[12]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature462(7269), 78 (2009)

[13]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities, Opt. Express18(23), 23844 (2010)

[14]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature452(7183), 72 (2008)

[15]

H. K. Cheung, and C. K. Law, Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity, Phys. Rev. A84(2), 023812 (2011)

[16]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity optomechanics with a Bose-Einstein condensate, Science322(5899), 235 (2008)

[17]

K. Zhang, P. Meystre, and W. Zhang, Role reversal in a Bose-Condensed optomechanical system, Phys. Rev. Lett.108(24), 240405 (2012)

[18]

K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)

[19]

C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys.4(7), 555 (2008)

[20]

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys.85(2), 623 (2013)

[21]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett.99(9), 093901 (2007)

[22]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett.99(9), 093902 (2007)

[23]

Y. Li, L. A. Wu, and Z. D. Wang, Fast ground-state cooling of mechanical resonators with time-dependent optical cavities, Phys. Rev. A83(4), 043804 (2011)

[24]

J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett.101(26), 263602 (2008)

[25]

S. Gröblacher, K. Hammerer, M. Vanner, and M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature460(7256), 724 (2009)

[26]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, Circuit cavity electromechanics in the strong-coupling regime, Nature471(7337), 204 (2011)

[27]

A. Kronwald and F. Marquardt, Optomechanically induced transparency in the nonlinear quantum regime, Phys. Rev. Lett.111(13), 133601 (2013)

[28]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically Induced Transparency, Science330(6010), 1520 (2010)

[29]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature472(7341), 69 (2011)

[30]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature, Phys. Rev. A88(1), 013804 (2013)

[31]

D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, Slowing and stopping light using an optomechanical crystal array, New J. Phys.13(2), 023003 (2011)

[32]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett.107(13), 133601 (2011)

[33]

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett.95(3), 033901 (2005)

[34]

F. Marquardt, J. G. E. Harris, and S. M. Girvin, Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett.96(10), 103901 (2006)

[35]

K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and T. Udem, A phonon laser, Nat. Phys.5(9), 682 (2009)

[36]

F. Massel, T. T. Heikkilä, J. M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, Microwave amplification with nanomechanical resonators, Nature480(7377), 351 (2011)

[37]

A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, and T. J. Kippenberg, Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics, arXiv: 1312.5867 (2013)

[38]

A. Metelmann and A. A. Clerk, Quantum-limited amplification via reservoir engineering, Phys. Rev. Lett.112(13), 133904 (2014)

[39]

X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express22(5), 4886 (2014)

[40]

M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, and M. Aspelmeyer, Creating and probing multipartite macroscopic entanglement with light, Phys. Rev. Lett.99(25), 250401 (2007)

[41]

M. Bhattacharya and P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state, Phys. Rev. Lett.99(7), 073601 (2007)

[42]

Y. D. Wang, and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett.108(15), 153603 (2012)

[43]

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys.10(4), 321 (2014)

[44]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Coherent optical wavelength conversion via cavity optomechanics, Nat. Commun.3, 1196 (2012)

[45]

G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys.16(3), 033023 (2014)

[46]

D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, 1994

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (275KB)

1333

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/