Quantum state manipulation of single-Cesium-atom qubit in a micro-optical trap

Zhi-Hui Wang, Gang Li, Ya-Li Tian, Tian-Cai Zhang

PDF(475 KB)
PDF(475 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 634-639. DOI: 10.1007/s11467-014-0442-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum state manipulation of single-Cesium-atom qubit in a micro-optical trap

Author information +
History +

Abstract

Based on single Cesium atoms trapped in a 1064 nm microscopic optical trap we have exhibited a single qubit encoded in the Cesium “clock states”. The single qubit initialization, detection and the fast state rotation with high efficiencies are demonstrated and this state manipulation is crucial for quantum information processing. The ground states Rabi flopping rate of 229.0±0.6 kHz is realized by a two-photon Raman process. A clock states dephasing time of 3.0±0.7 ms is measured, while an irreversible homogeneous dephasing time of 124±17 ms is achieved by using the spin-echo technique. This well-controlled single atom provides an ideal quantum qubit and quantum node for quantum information processing.

Graphical abstract

Keywords

qubit / single atom / Rabi flopping / spin-echo / dephasing time

Cite this article

Download citation ▾
Zhi-Hui Wang, Gang Li, Ya-Li Tian, Tian-Cai Zhang. Quantum state manipulation of single-Cesium-atom qubit in a micro-optical trap. Front. Phys., 2014, 9(5): 634‒639 https://doi.org/10.1007/s11467-014-0442-0

References

[1]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[2]
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped ions, Rev. Mod. Phys., 2003, 75(1): 281
CrossRef ADS Google scholar
[3]
L. M. K. Vandersypen, and I. L. Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys., 2005, 76(4): 1037
CrossRef ADS Google scholar
[4]
K. Sanaka, T. Jennewein, J. W. Pan, K. Resch, and A. Zeilinger, Experimental nonlinear sign shift for linear optics quantum computation, Phys. Rev. Lett., 2004, 92(1): 017902
CrossRef ADS Google scholar
[5]
T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Demonstration of conditional gate operation using superconducting charge qubits, Nature, 2003, 425(6961): 941
CrossRef ADS Google scholar
[6]
A. M. Kaufman, B. J. Lester, and C. A. Regal, cooling a single atom in an optical tweezer to its quantum ground state, Phys. Rev. X, 2012, 2: 041014
[7]
J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, Coherence and Raman sideband cooling of a single atom in an optical tweezer, Phys. Rev. Lett., 2013, 110(13): 133001
CrossRef ADS Google scholar
[8]
T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett., 2010, 104(1): 010502
CrossRef ADS Google scholar
[9]
M. Saffman and K. Mømer, Efficient multiparticle entanglement via asymmetric Rydberg blockade, Phys. Rev. Lett., 2009, 102(24): 240502
CrossRef ADS Google scholar
[10]
M. Ebert, A. Gill, M. Gibbons, X. Zhang, M. Saffman, and T. G. Walker, Atomic Fock state preparation using Rydberg blockade, Phys. Rev. Lett., 2014, 112(4): 043602
CrossRef ADS Google scholar
[11]
L. You, X. X. Yi, and X. H. Su, Quantum logic between atoms inside a high-Q optical cavity, Phys. Rev. A, 2003, 67(3): 032308
CrossRef ADS Google scholar
[12]
D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Entanglement of atoms via cold controlled collisions, Phys. Rev. Lett., 1999, 82(9): 1975
CrossRef ADS Google scholar
[13]
N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, Sub-poissonian loading of single atoms in a microscopic dipole trap, Nature, 2001, 411(6841): 1024
CrossRef ADS Google scholar
[14]
N. Schlosser, G. Reymond, and P. Grangier, Collisional blockade in microscopic optical dipole traps, Phys. Rev. Lett., 2002, 89(2): 023005
CrossRef ADS Google scholar
[15]
S. Kuhr, W. Alt, D. Schrader, M. Muller, V. Gomer, and D. Meschede, Deterministic delivery of a single atom, Science, 2001, 293: 278
CrossRef ADS Google scholar
[16]
J. He, J. Wang, B. D. Yang, T. C. Zhang, and J. M. Wang, Single cesium atoms transferring between a magneto-optical trap and a far-off-resonance optical dipole trap, Chin. Phys. B, 2009, 18(8): 3404
CrossRef ADS Google scholar
[17]
S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, A. Rauschenbeutel, and D. Meschede, Analysis of dephasing mechanisms in a standing-wave dipole trap, Phys. Rev. A, 2005, 72(2): 023406
CrossRef ADS Google scholar
[18]
W. Rosenfeld, J. Volz, M. Weber, and H. Weinfurter, Coherence of a qubit stored in Zeeman levels of a single optically trapped atom, Phys. Rev. A, 2011, 84(2): 022343
CrossRef ADS Google scholar
[19]
Y. Q. Guo, G. Li, Y. F. Zhang, P. F. Zhang, J. M. Wang, and T. C. Zhang, Efficient fluorescence detection of a single neutral atom with low background in a microscopic optical dipole trap, Sci. China-Phys. Mech. Astron., 2012, 55(9): 1523
CrossRef ADS Google scholar
[20]
W. Alt, An objective lens for efficient fluorescence detection of single atoms, Optik (Stuttg.), 2002, 113(3): 142
CrossRef ADS Google scholar
[21]
S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, Coherence properties and quantum state transportation in an optical conveyor belt, Phys. Rev. Lett., 2003, 91(21): 213002
CrossRef ADS Google scholar
[22]
T. A. Savard, K. M. O’Hara, and J. E. Thomas, Laser-noiseinduced heating in far-off resonance optical traps, Phys. Rev. A, 1997, 56(2): R1095
CrossRef ADS Google scholar
[23]
J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, Extending the trapping lifetime of single atom in a microscopic far-off-resonance optical dipole trap, Front. Phys., 2011, 6(3): 262
CrossRef ADS Google scholar
[24]
M. J. Gibbons, S. Y. Kim, K. M. Fortier, P. Ahmadi, and M. S. Chapman, Achieving very long lifetimes in optical lattices with pulsed cooling, Phys. Rev. A, 2008, 78(4): 043418
CrossRef ADS Google scholar
[25]
M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, Fast quantum state control of a single trapped neutral atom, Phys. Rev. A, 2007, 75(4): 040301(R)
CrossRef ADS Google scholar
[26]
D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, Fast ground state manipulation of neutral atoms in microscopic optical traps, Phys. Rev. Lett., 2006, 96(6): 063001
CrossRef ADS Google scholar
[27]
P. Xu, X. D. He, J. Wang, and M. S. Zhang, Trapping a single atom in a blue detuned optical bottle beam trap, Opt. Lett., 2010, 35(13): 2164
CrossRef ADS Google scholar
[28]
G. Li, S. Zhang, L. Isenhower, K. Maller, and M. Saffman, Crossed vortex bottle beam trap for single-atom qubits, Opt. Lett., 2012, 37(5): 851
CrossRef ADS Google scholar
[29]
H. D. Kim, H. S. Han, and D. Cho, Magic polarization for optical trapping of atoms without Stark-induced dephasing, Phys. Rev. Lett., 2013, 111(24): 243004
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(475 KB)

Accesses

Citations

Detail

Sections
Recommended

/