Modulation of four-wave mixing via photonic band gap
Zhen-Kun Wu, Kai-Ge Chang, Yi Hu, Yun-Zhe Zhang, Zi-Hai Jiang, Yan-Peng Zhang
Modulation of four-wave mixing via photonic band gap
The dressed four-wave mixing (FWM) in a four-level 85Rb atomic system, experimentally demonstrated in this paper, is comprised by two coexisting processes. One is emission signal due to enhanced nonlinear via electromagnetically induced transparency (EIT). The other is the Bragg reflection of probe beam because of the created photonic band gap (PBG), which is affected by both linear and third-order nonlinear susceptibility. Moreover, we have demonstrated that different experimental parameters can significantly influence the measured signal with flexibly controlled PBG. These studies are found useful for understanding the fundamental mechanisms in generated FWM processing.
four-wave mixing (FWM) / electromagnetically induced transparency (EIT) / photonic band gap (PBG)
[1] |
K. J. Boller, A. Imamolu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett., 1991, 66(20): 2593
CrossRef
ADS
Google scholar
|
[2] |
J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment, Phys. Rev. A, 1995, 51(1): 576
CrossRef
ADS
Google scholar
|
[3] |
H. Kang, G. Hernandez, and Y. Zhu, Resonant four-wave mixing with slow light, Phys. Rev. A, 2004, 70(6): 061804 (R)
CrossRef
ADS
Google scholar
|
[4] |
M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence, Phys. Rev. Lett., 1999, 82(9): 1847
CrossRef
ADS
Google scholar
|
[5] |
P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, Efficient low intensity optical phase conjugation based on coherent population trapping in sodium, Opt. Lett., 1995, 20(9): 982
CrossRef
ADS
Google scholar
|
[6] |
M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Efficient nonlinear frequency conversion with maximal atomic coherence, Phys. Rev. Lett., 1996, 77(21): 4326
CrossRef
ADS
Google scholar
|
[7] |
M. Artoni and G. C. La Rocca, Optically tunable photonic stop bands in homogeneous absorbing media, Phys. Rev. Lett., 2006, 96(7): 073905
CrossRef
ADS
Google scholar
|
[8] |
J. W. Gao, Y. Zhang, N. Ba, C. L. Cui, and J. H. Wu, Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence, Opt. Lett., 2010, 35(5): 709
CrossRef
ADS
Google scholar
|
[9] |
Z. K. Wu, Y. Q. Zhang, T. K. Liu, Z. Y. Zhang, C. Li, Y. P. Zhang, and M. Xiao, Coherent control of dressed images of four-wave mixing, Front. Phys., 2013, 8(2): 228
CrossRef
ADS
Google scholar
|
[10] |
Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, C. B. Li, Z. G. Wang, and M. Xiao, Surface solitons of fourwave mixing in an electromagnetically induced lattice, Laser Phys. Lett., 2013, 10(5): 055406
CrossRef
ADS
Google scholar
|
[11] |
Z. G. Wang, P. Ying, P. Y. Li, H. Y. Lan, H. Q. Huang, H. Tian, J. P. Song, and Y. P. Zhang, Phase regulated suppression and enhancement switches of four-wave mixing and fluorescence, Front. Phys., 2014, 9(2): 153
CrossRef
ADS
Google scholar
|
[12] |
A. Imamolu and S. E. Harris, Lasres without inversion: Interference of dressed lifetime-broadened state, Opt. Lett., 1989, 14(24): 1344
CrossRef
ADS
Google scholar
|
[13] |
G. Wang, H. Lu, and X. Liu, Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency, Opt. Exp., 2012, 20: 902
|
[14] |
C. Liu, Z. Dutton, C. Behroozi, and L. Hau, Controlling photons using electromagnetically induced transparency, Nature, 2001, 409: 490
CrossRef
ADS
Google scholar
|
[15] |
X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber, Opt. Exp., 2005, 13(1): 142
CrossRef
ADS
Google scholar
|
[16] |
J. H. Wu, M. Artoni, and G. C. La Rocca, Controlling the photonic band structure of optically driven cold atoms, J. Opt. Soc. Am. B, 2008, 25(11): 1840
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |