Pairing symmetry in layered BiS2 compounds driven by electron–electron correlation
Yi Liang, Xianxin Wu, Wei-Feng Tsai, Jiangping Hu
Pairing symmetry in layered BiS2 compounds driven by electron–electron correlation
We investigate the pairing symmetry of layered BiS2 compounds by assuming that electron-electron correlation is still important so that the pairing is rather short range. We find that the extended s-wave pairing symmetry always wins over d-wave when the pairing is confined between two short range sites up to next nearest neighbors. The pairing strength is peaked around the doping level x = 0.5, which is consistent with experimental observation. The extended s-wave pairing symmetry is very robust against spin–orbital coupling because it is mainly determined by the structure of Fermi surfaces. Moreover, the extended s-wave pairing can be distinguished from conventional s-wave pairing by measuring and comparing superconducting gaps of different Fermi surfaces.
BiS2-based superconductor / pairing symmetry / electron–electron correlation
[1] |
Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Novel BiS2-based layered superconductor Bi4O4S3, Phys. Rev. B, 2012, 86(22): 220510(R), arXiv: 1207.3145
|
[2] |
Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, Superconductivity in novel BiS2-based layered superconductor LaO1–xFxBiS2, J. Phys. Soc. Jpn., 2012, 81: 114725, arXiv: 1207.3558
CrossRef
ADS
Google scholar
|
[3] |
S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S. J. Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, Y. Gotoh, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, BiS2-based superconductivity in F-substituted NdOBiS2, J. Phys. Soc. Jpn., 2013, 82(3): 033708, arXiv: 1207.5248
CrossRef
ADS
Google scholar
|
[4] |
R. Jha, A. Kumar, S. K. Singh, and V. P. S. Awana, Superconductivity at 5 K in NdO0.5F0.5BiS2, J. Appl. Phys., 2013, 113(5): 056102, arXiv: 1208.3077
CrossRef
ADS
Google scholar
|
[5] |
S. Li, H. Yang, J. Tao, X. Ding, and H. H. Wen, Multiband exotic superconductivity in the new superconductor Bi4O4S3, Sci. China-Phys. Mech. Astron., 2013, 56: 2019, arXiv: 1207.4955
|
[6] |
S. G. Tan, L. J. Li, Y. Liu, P. Tong, B. C. Zhao, W. J. Lu, and Y. P. Sun, Superconducting and thermoelectric properties of new layered superconductor Bi4O4S3, Physica C, 2012, 483: 94, arXiv: 1207.5395
CrossRef
ADS
Google scholar
|
[7] |
H. Kotegawa, Y. Tomita, H. Tou, H. Izawa, Y. Mizuguchi, O. Miura, S. Demura, K. Deguchi, and Y. Takano, Pressure study of BiS2-based superconductors Bi4O4S3 and La(O,F)BiS2, J. Phys. Soc. Jpn., 2012, 81: 103702, arXiv: 1207.6935
CrossRef
ADS
Google scholar
|
[8] |
H. Usui, K. Suzuki, and K. Kuroki, Minimal electronic models for superconducting BiS2 layers, Phys. Rev. B, 2012, 86(22): 220501(R), arXiv: 1207.3888
|
[9] |
T. Zhou and Z. D. Wang, Probing the superconducting pairing symmetry from spin excitations in BiS2 based superconductors, J. Supercond. Nov. Magn., 2013, 26(8): 2735, arXiv: 1208.1101
CrossRef
ADS
Google scholar
|
[10] |
X. G. Wan, H. C. Ding, S. Y. Savrasov, and C. G. Duan, Density-functional calculations of the electronic structure and lattice dynamics of superconducting LaO0.5F0.5BiS2: Evidence for an electron–phonon interaction near the chargedensity-wave instability, Phys. Rev. B, 2013, 87(11): 115124, arXiv: 1208.1807
CrossRef
ADS
Google scholar
|
[11] |
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x= 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc., 2008, 130(11): 3296
CrossRef
ADS
Google scholar
|
[12] |
P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys., 2011, 74(12): 124508
CrossRef
ADS
Google scholar
|
[13] |
K. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett., 2008, 101(20): 206404
CrossRef
ADS
Google scholar
|
[14] |
J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports, 2012, 2: 381
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |