First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters

Tai-Gang Liu, Wen-Qing Zhang, Yan-Li Li

Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 210-218.

PDF(525 KB)
PDF(525 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 210-218. DOI: 10.1007/s11467-013-0398-5

First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters

Author information +
History +

Abstract

The structure, electronic and magnetic properties of HoSin(n = 1-12, 20) clusters have been widely investigated by first-principles calculation method based on density functional theory (DFT). From our calculation results, we find that for HoSin(n = 1-12) clusters except n = 7, 10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin(n = 1-12, 20) clusters mainly comes from 4f electron of Ho, and never quenches.

Graphical abstract

Keywords

structure / stability / electronic and magnetic properties / HoSin cluster

Cite this article

Download citation ▾
Tai-Gang Liu, Wen-Qing Zhang, Yan-Li Li. First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters. Front. Phys., 2014, 9(2): 210‒218 https://doi.org/10.1007/s11467-013-0398-5

References

[1]
N. Uchida, T. Miyazaki, and T. Kanayama, Stabilization mechanism of Si12 cage clusters by encapsulation of a transition-metal atom: A density-functional theory study, Phys. Rev. B, 2006, 74(20): 205427
CrossRef ADS Google scholar
[2]
M. B. Torres, E. M. Fernández, and L. C. Balbás, Theoretical study of isoelectronic SinM clusters (M=Sc-, Ti, V+; n = 14–18), Phys. Rev. B, 2007, 75(20): 205425
CrossRef ADS Google scholar
[3]
J. Wang and J. G. Han, Geometries, stabilities, and electronic properties of different-sized ZrSin(n= 1–16) clusters: A density-functional investigation, J. Chem. Phys., 2005, 123(6): 064306
CrossRef ADS Google scholar
[4]
L. J. Guo, X. Liu, G. F. Zhao, and Y. H. Luo, Computational investigation of TiSin(n= 2–15) clusters by the densityfunctional theory, J. Chem. Phys., 2007, 126(23): 234704
CrossRef ADS Google scholar
[5]
S. M. Beck, Mixed metal–silicon clusters formed by chemical reaction in a supersonic molecular beam: Implications for reactions at the metal/silicon interface, J. Chem. Phys., 1989, 90(11): 6306
CrossRef ADS Google scholar
[6]
S. M. Beck, Studies of silicon cluster–metal atom compound formation in a supersonic molecular beam, J. Chem. Phys., 1987, 87(7): 4233
CrossRef ADS Google scholar
[7]
M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya, Geometric and electronic structures of metal (M)-doped silicon clusters (M=Ti, Hf, Mo and W), Chem. Phys. Lett., 2003, 371(3-4): 490
CrossRef ADS Google scholar
[8]
K. Koyasu, M. Akutsu, M. Mitsui, and A. Nakajima, Selective formation of MSi16 (M= Sc, Ti, and V), J. Am. Chem. Soc., 2005, 127(14): 4998
CrossRef ADS Google scholar
[9]
J. B. Jaeger, T. D. Jaeger, and M. A. Duncan, Photodissociation of metal-silicon clusters: Encapsulated versus surfacebound metal, J. Phys. Chem. A, 2006, 110(30): 9310
CrossRef ADS Google scholar
[10]
H. Hiura, T. Miyazaki, and T. Kanayama, Formation of metal-encapsulating Si cage clusters., Phys. Rev. Lett., 2001, 86(9): 1733
CrossRef ADS Google scholar
[11]
J. Lu and S. Nagase, Structural and electronic properties of metal-encapsulated silicon clusters in a large size range, Phys. Rev. Lett., 2003, 90(11): 115506
CrossRef ADS Google scholar
[12]
P. Sen and L. Mitas, Electronic structure and ground states of transition metals encapsulated in a Si12 hexagonal prism cage, Phys. Rev. B, 2003, 68(15): 155404
CrossRef ADS Google scholar
[13]
J. U. Reveles and S. N. Khanna, Nearly-free-electron gas in a silicon cage, Phys. Rev. B, 2005, 72(16): 165413
CrossRef ADS Google scholar
[14]
J. U. Reveles and S. N. Khanna, Electronic counting rules for the stability of metal-silicon clusters, Phys. Rev. B, 2006, 74(3): 035435
CrossRef ADS Google scholar
[15]
N. Uchida, T. Miyazaki, and T. Kanyama, Stabilization mechanism of Si12 cage clusters by encapsulation of a transition-metal atom: A density-functional theory study, Phys. Rev. B, 2006, 74(20): 205427
CrossRef ADS Google scholar
[16]
F. C. Chuang, Y. Y. Hsieh, C. C. Hsu, and M. A. Albao, Geometries and stabilities of Ag-doped Sin(n= 1–13) clusters: A first-principles study, J. Chem. Phys., 2007, 127(14): 144313
CrossRef ADS Google scholar
[17]
F. Hagelberg, C. Xiao, and Lester, Cagelike Si12 clusters with endohedral Cu, Mo, and W metal atom impurities, Phys. Rev. B, 2003, 67(3): 035426
CrossRef ADS Google scholar
[18]
V. Kumar and Y. Kawazoe, Magic behavior of Si15Mand Si16M(M= Cr, Mo, and W) clusters, Phys. Rev. B, 2002, 65(7): 073404
CrossRef ADS Google scholar
[19]
L. Ma, J. Zhao, J. Wang, B. Wang, Q. Lu, and G. Wang, Growth behavior and magnetic properties of SinFe (n= 2–14) clusters, Phys. Rev. B, 2006, 73(12): 125439
CrossRef ADS Google scholar
[20]
J. G. Wang, J. J. Zhao, L. Ma, B. L. Wang, and G. H. Wang, Structure and magnetic properties of cobalt doped (n= 2–14) clusters, Phys. Lett. A, 2007, 367(4-5): 335
CrossRef ADS Google scholar
[21]
J. Wang, Q. M. Ma, Z. Xie, Y. Liu, and Y. C. Li, From SinNi to Ni@Sin: An investigation of configurations and electronic structure, Phys. Rev. B, 2007, 76(3): 035406
CrossRef ADS Google scholar
[22]
T. Miyazaki, H. Hiura, and T. Kanayama, Topology and energetics of metal-encapsulating Si fullerenelike cage clusters, Phys. Rev. B, 2002, 66(12): 121403
CrossRef ADS Google scholar
[23]
M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya, Geometric and electronic structures of terbiumsilicon mixed clusters (TbSin; 6 _ n_ 16), J. Phys. Chem. A, 2002, 106(15): 3702
CrossRef ADS Google scholar
[24]
M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya, Geometric and electronic structures of terbiumsilicon mixed clusters (TbSin; 6 _ n_ 16), J. Phys. Chem. A, 2007, 111(42): 10884
CrossRef ADS Google scholar
[25]
A. Grubisic, H. P. Wang, Y. J. Ko, and K. H. Bowen, Photoelectron spectroscopy of europium-silicon cluster anions, EuSi - n(3 _ n_ 17), J. Chem. Phys., 2008, 129(5): 054302
CrossRef ADS Google scholar
[26]
A. Grubisic, Y. J. Ko, H. P. Wang, and K. H. Bowen, Photoelectron spectroscopy of Lanthanide-Silicon cluster anions LnSi - n(3 _ n_ 13; Ln= Ho, Gd, Pr, Sm, Eu, Yb): Prospect for magnetic silicon-based clusters, J. Am. Chem. Soc., 2009, 131(30): 10783
CrossRef ADS Google scholar
[27]
K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima, Anion photoelectron spectroscopy of transition metal- and lanthanide metal-silicon clusters: Msi - n(n= 6–20), J. Chem. Phys., 2008, 129(21): 214301
CrossRef ADS Google scholar
[28]
T. T. Cao, L. X. Zhao, X. J. Feng, Y. M. Lei, and Y. H. Luo, Structural and electronic properties of LuSin(n= 1–12) clusters: A density functional theory investigation, J. Mol. Struct. Theochem., 2009, 895(1-3): 148
CrossRef ADS Google scholar
[29]
R. N. Zhao, J. G. Han, J. T. Bai, F. Y. Liu, and L. S. Sheng, A relativistic density functional study of Sin(n= 7–13) clusters with rare earth ytterbium impurity, Chem. Phys., 2010, 372(1-3): 89
CrossRef ADS Google scholar
[30]
V. Kumar, A. K. Singh, and Y. Kawazoe, Charged and magnetic fullerenes of silicon by metal encapsulation: Predictions from ab initiocalculations, Phys. Rev. B, 2006, 74(12): 125411
CrossRef ADS Google scholar
[31]
J. Wang, Y. Liu, and Y. C. Li, Magnetic silicon fullerence, Phys. Chem. Chem. Phys., 2010, 12(37): 11428
CrossRef ADS Google scholar
[32]
G. F. Zhao, J. M. Sun, Y. Z. Gu, and Y. X. Wang, Density-functional study of structural, electronic, and magnetic properties of the EuSin(n= 1–13) clusters, J. Chem. Phys., 2009, 131(11): 114312
CrossRef ADS Google scholar
[33]
T. G. Liu, G. F. Zhao, and Y. X. Wang, Structural, electronic and magnetic properties of GdSin(n= 1–17) clusters: A density functional study, Phys. Lett. A, 2011, 375(7): 1120
CrossRef ADS Google scholar
[34]
B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys., 1990, 92(1): 508
CrossRef ADS Google scholar
[35]
B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys., 2000, 113(18): 7756
CrossRef ADS Google scholar
[36]
M. Dolg, U. Wedig, H. Stoll, and H. Preuss, Energy-adjusted ab initiopseudopotentials for the first row transition elements, J. Chem. Phys., 1987, 86(2): 866
CrossRef ADS Google scholar
[37]
A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preuß, Ab initio energy-adjusted pseudopotentials for elements of groups 13–17, Mol. Phys., 1993, 80(6): 1431
CrossRef ADS Google scholar
[38]
X. L. Zhu, X. C. Zeng, Y. A. Lei, and B. Pan, Structures and stability of medium silicon clusters. II. Ab initiomolecular orbital calculations of Si12–Si20, J. Chem. Phys., 2004, 120(19): 8985
CrossRef ADS Google scholar
[39]
A. A. Shvartsburg, B. Liu, M. F. Jarrold, and K. M. Ho, Modeling ionic mobilities by scattering on electronic density isosurfaces: Application to silicon cluster anions, J. Chem. Phys., 2000, 112(10): 4517
CrossRef ADS Google scholar
[40]
C. Pouchan, D. Begue, and D. Y. Zhang, Between geometry, stability, and polarizability: Density functional theory studies of silicon clusters Sin(n= 3–10), J. Chem. Phys., 2004, 121(10): 4628
CrossRef ADS Google scholar
[41]
M. A. Belkhir, S. Mahtout, I. Belabbas, and M. Samah, Structure and electronic property of medium-sized silicon clusters, Physica E, 2006, 31(1): 86
CrossRef ADS Google scholar
[42]
T. T. Cao, X. J. Feng, L. X. Zhao, X. Liang, Y. M. Lei, and Y. H. Luo, Structure and magnetic properties of La-doped Sin(n= 1–12, 24) clusters: a density functional theory investigation, Eur. Phys. J. D, 2008, 49(3): 343
CrossRef ADS Google scholar
[43]
S. N. Khanna, B. K. Rao, and P. Jena, Magic numbers in metallo-inorganic clusters: Chromium encapsulated in silicon cages, Phys. Rev. Lett., 2002, 89(1): 016803
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(525 KB)

Accesses

Citations

Detail

Sections
Recommended

/