Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1-x alloys under high pressure

Xiao-Li Yuan , Mi-An Xue , Wen Chen , Tian-Qing An

Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 219 -225.

PDF (450KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 219 -225. DOI: 10.1007/s11467-013-0391-z

Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1-x alloys under high pressure

Author information +
History +
PDF (450KB)

Abstract

The physical properties of ZrxTi1-x (x = 0.0, 0.33, 0.5, 0.67, 0.75 and 1.00) alloys were simulated by virtual crystal approximation (VCA) methods which is generally used for disordered solid solutions modeling. The elastic constant, electronic structure and thermal Equation of state (EOS) of disordered ZrxTi1-x alloys under pressure are investigated by plane-wave pseudo-potential method. Our simulations reveal increasement of variations of the calculated equilibrium volumes and decreasement of Bulk modulus as a function of the alloy compositions. Lattice parameters a and c of alloys with different Zr concentrations decrease linearly with pressure increasing, but the c/avalues are increasing as pressure increases, indicating no phase transitions under pressure from 0 GPa to 100 GPa. The elastic constants and the Bulk modulus to the Shear modulus ratios (B/G) indicate good ductility of Zr, Zr0.33Ti0.67, Zr0.5Ti0.5, Zr0.75Ti0.25 and Ti, but the Zr0.67Ti0.33 alloy is brittle under 0 K and 0 GPa. The metallic behavior of these alloys was also proved by analyzing partial and total DOS.

Graphical abstract

Keywords

dalloy / density functional theory / virtual crystal approximation (VCA) / mechanics / elastic properties

Cite this article

Download citation ▾
Xiao-Li Yuan, Mi-An Xue, Wen Chen, Tian-Qing An. Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1-x alloys under high pressure. Front. Phys., 2014, 9(2): 219-225 DOI:10.1007/s11467-013-0391-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Okazaki, S. Rao, T. Tateishi, and Y. Ito, Cytocompatibility of various metal and development of new titanium alloys for medical implants, Mat. Sci. Eng. A, 1998, 243(1-2): 250

[2]

M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr, Biomaterials, 2003, 24: 2673

[3]

Y. Okazaki, S. Asao, S. Rao, and T. Tateishi, Effect of concentration of Zr, Sn, Nb, Ta, Pd, Mo, Co, Cr, Si, Ni, Fe on the relative growth ratios of bio-cells, J. Jpn. Inst. Met., 1996, 60: 902

[4]

D. L. Douglass, The physical metallurgy of zirconium, At. Energy Rev., 1963, 3: 71

[5]

H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito, First-principles calculations for development of low elastic modulus Ti alloys, Phys. Rev. B, 2004, 70(17): 174113

[6]

W. Liu, B. Li, L. Wang, J. Zhang, and Y. Zhao, Elasticity of w-phase zirconium, Phys. Rev. B, 2007, 76(14): 144107

[7]

M. T. Pérez-Prado and A. P. Zhilyaev, First experimental observation of shear induced hcp to bcc transformation in pure Zr, Phys. Rev. Lett., 2009, 102(17): 175504

[8]

L. Saldana, A. Méndez-Vilas, L. Jiang, M. Multigner, J. L. González-Carrasco, M. T. Pérez-Prado, M. L. González-Martín, L. Munuera, and N. Vilaboa, In vitro biocompatibility of an ultrafine grained zirconium, Biomaterials, 2007, 28(30): 4343

[9]

N. Stojilovic, E. T. Bender, and R. D. Ramsier, Surface chemistry of zirconium, Prog. Surf. Sci., 2005, 78(3-4): 101

[10]

M. Long and H. J. Rack, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials, 1998, 19(18): 1621

[11]

J. C. Duthie and D. G. Pettifor, Correlation between d-band occupancy and crystal structure in the rare earths, Phys. Rev. Lett., 1977, 38(10): 564

[12]

H. L. Skriver, Crystal structure from one-electron theory, Phys. Rev. B, 1985, 31(4): 1909

[13]

Z. G. Mei, S. L. Shang, Y. Wang, and Z. K. Liu, Densityfunctional study of the pressure-induced phase transitions in Ti at zero Kelvin, Phys. Rev. B, 2009, 79(13): 134102

[14]

C. E. Hu, Z. Y. Zeng, L. Zhang, X. R. Chen, L. C. Cai, and D. Alfè, Theoretical investigation of the high pressure structure, lattice dynamics, phase transition, and thermal equation of state of titanium metal, J. Appl. Phys., 2010, 107(9): 093509

[15]

Y. J. Hao, L. Zhang, X. R. Chen, L. C. Cai, Q. Wu, and D. Alfè, Ab initio calculations of the thermodynamics and phase diagram of zirconium, Phys. Rev. B, 2008, 78(13): 134101

[16]

I. Schnell and R. C. Albers, Zirconium under pressure: Phase transitions and thermodynamics, J. Phys.: Condens. Matter, 2006, 18(5): 1483

[17]

R. Ahuja, J. M. Wills, B. Johansson, and O. Eriksson, Crystal structures of Ti, Zr, and Hf under compression: Theory, Phys. Rev. B, 1993, 48(22): 16269

[18]

H. Xia, S. J. Duclos, A. L. Ruoff, and Y. K. Vohra, New highpressure phase transition in zirconium metal, Phys. Rev. Lett., 1990, 64(2): 204

[19]

H. Xia, A. L. Ruoff, and Y. K. Vohra, Temperature dependence of the w-bcc phase transition in zirconium metal, Phys. Rev. B, 1991, 44(18): 10374

[20]

Y. Akahama, M. Kobayashi, and H. Kawamura, Superconductivity and phase transition of zirconium under high pressure up to 50 GPa, J. Phys. Soc. Jpn., 1990, 59(11): 3843

[21]

Y. Akahama, M. Kobayashi, and H. Kawamura, Highpressure X-ray diffraction study on electronics-d transition in zirconium, J. Phys. Soc. Jpn., 1991, 60(10): 3211

[22]

Y. Akahama, H. Kawamura, and T. LeBihan, New d (distorted-bcc) titanium to 220 GPa, Phys. Rev. Lett., 2001, 87(27): 275503

[23]

Y. S. Zhao and J. Z. Zhang, Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition, Appl. Phys. Lett., 2007, 91(20): 201907

[24]

Y. K. Vohra and P. T. Spencer, Novel g-phase of titanium metal at megabar pressures, Phys. Rev. Lett., 2001, 86(14): 3068

[25]

I. O. Bashkin, A. Yu. Pagnuev, A. F. Gurov, V. K. Fedotov, G. E. Abrosimova, and E. G. Ponyatovskii, Phase transformations in equiatomic alloy TiZr at pressure up to 70 kbar, Phys. Solid State, 2000, 42(1): 170

[26]

I. O. Bashkin, A. Yu. Pagnuev, A. F. Gurov, V. K. Fedotov, G. E. Abrosimova, and E. G. Ponyatovsky, Enhanced superconductivity of the Ti-Zr alloys in the high-pressure BCC phase, JETP Lett., 2001, 73(2): 75

[27]

I. O. Bashkin, V. K. Fedotov, M. V. Nefedova, V. G. Tissen, E. G. Ponyatovsky, A. Schiwek, and W. B. Holzapfel, Crystal structure and superconductivity of TiZr up to 57 GPa, Phys. Rev. B, 2003, 68(5): 054401

[28]

V. V. Aksenenkov, V. D. Blank, B. A. Kulnitskiy, and E. I. Estrin, Phys. Met. Metalloved., 1990, 69: 154

[29]

J. L. Murray, Phase Diagrams of Binary Titanium Alloys, ASM International, Materials Park, OH, 1987: 340

[30]

W. F. Ho, W. K. Chen, S. C. Wu, and H. C. Hsu, Structure, mechanical properties, and grindability of dental Ti-Zr alloys, J. Mater. Sci. Mater. Med., 2008, 19(10): 3179

[31]

H. C. Hsu, S. C. Wu, Y. C. Sung, and W. F. Hod, The structure and mechanical properties of as-cast Zr-Ti alloys, J. Alloy. Comp., 2009, 488(1): 279

[32]

W. F. Ho, C. H. Cheng, C. H. Pan, S. C. Wu, and H. C. Hsu, Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys, Mater. Sci. Eng. C, 2009, 29(1): 36

[33]

T. Muto, On the electronic structure of alloys, Sci. Pap. Inst. Phys. Chem. Res., 1938, 34: 377

[34]

L. Nordheim, Zur Elektronentheorie der Metalle (I), Ann.Phys., 1931, 9: 607

[35]

L. L. Sun, Y. Cheng, and G. F. Ji, Elastic and optical propertiesof CeO2 via first-principles calculations, J. At. Mol. Sci., 2010, 1: 143

[36]

X. L. Yuan, D. Q. Wei, X. R. Chen, Q. M. Zhang, and Z. Z. Gong, The first-principles calculations for the elastic properties of Zr2Al under compression, J. Alloy. Comp., 2011, 509(3): 769

[37]

X. L. Yuan, D. Q. Wei, Y. Cheng, J. G. Fu, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comput. Mater. Sci., 2012, 58: 125

[38]

X. L. Yuan, D. Q. Wei, Y. Cheng, Q. M. Zhang, and Z. Z. Gong, Thermodynamic properties of Zr2Al under high pressure from first-principles calculations, J. At. Mol. Sci., 2012, 3: 160

[39]

X. L. Yuan, M. A. Xue, W. Chen, T. Q. An, and Y. Cheng, Investigations on the structural, elastic and electronic properties of the orthorhombic Zirconium-Nickel alloy under different pressure, Comput. Mater. Sci., 2012, 65: 127

[40]

X. R. Chen, Z. Y. Zeng, Z. L. Liu, L. C. Cai, and F. Q. Jing, Elastic anisotropy of ϵ-Fe under conditions at the Earth’s inner core, Phys. Rev. B, 2011, 83(13): 132102

[41]

H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188

[42]

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, 41(11): 7892

[43]

B. Hammer, L. B. Hansen, and J. K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B, 1999, 59(11): 7413

[44]

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244

[45]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter, 2002, 14(11): 2717

[46]

F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 1947, 71(11): 809

[47]

Y. Zhao, J. Zhang, C. Pantea, J. Qian, L. L. Daemen, P. A. Rigg, R. S. Hixson, G. T. Gray, Y. Yang, L. Wang, Y. Wang, and T. Uchida, Thermal equations of state of the a, b, and w phases of zirconium, Phys. Rev. B, 2005, 71(18): 184119

[48]

B. Olinger and J. C. Jamieson, Zirconium: Phases and compressibility to 120 kilobars, High Temp. High Press., 1973, 5: 123

[49]

F. Willaime and C. Massobrio, Development of an N-body interatomic potential for hcp and bcc zirconium, Phys. Rev. B, 1991, 43(14): 11653

[50]

D. Errandonea, Y. Meng, M. Somayazulu, and D. Hausermann, Pressure-induced αω transition in titanium metal: A systematic study of the effects of uniaxial stress, Physica B, 2005, 355(1-4): 116

[51]

Y. K. Vohra and P. T. Spencer, Novel g-phase of titanium metal at megabar pressures, Phys. Rev. Lett., 2001, 86(14): 3068

[52]

J. Zhang, Y. Zhao, R. S. Hixson, G. T. Gray, L. P. Wang, W. Utsumi, S. Hiroyuki, and H. Takanori, Thermal equations of state for titanium obtained by high pressure-temperature diffraction studies, Phys. Rev. B, 2008, 78(5): 054119

[53]

J. P. Poirier, Introduction to the Physics of the Earth’s Interior, New York: Cambridge University Press, 1991

[54]

X. W. Sun, Q. F. Chen, X. R. Chen, L. C. Cai, and F. Q. Jing, First-principles investigations of elastic stability and electronic structure of cubic platinum carbide under pressure, J. Appl. Phys., 2011, 110(10): 103507

[55]

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystaline pure metals, Philos. Mag., 1954, 45: 823

[56]

H. L. Skriver, Crystal structure from one-electron theory, Phys. Rev. B, 1985, 31(4): 1909

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (450KB)

1117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/