Modifying optical properties of ZnO nanowires via strain-gradient

Xue-Wen Fu , Qiang Fu , Liang-Zhi Kou , Xin-Li Zhu , Rui Zhu , Jun Xu , Zhi-Min Liao , Qing Zhao , Wan-Lin Guo , Da-Peng Yu

Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 509 -515.

PDF (439KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 509 -515. DOI: 10.1007/s11467-013-0386-9
RESEARCH ARTICLE

Modifying optical properties of ZnO nanowires via strain-gradient

Author information +
History +
PDF (439KB)

Abstract

We conduct systematical cathodoluminescence study on red-shift of near-band-edge emission energy in elastic bent ZnO nanowires with diameters within the exciton diffusion length (∼ 200 nm) in liquid nitrogen temperature (81 K). By charactering the emission spectra of the nanowires with different local curvatures, we find a linear relationship between strain-gradient and the red-shift of near-band-edge emission photon energy, an elastic strain-gradient effect in semiconductor similar to the famous flexoelectric effect in liquid crystals. Our results provide a new route to understand the inhomogeneous strain effect on the energy bands and optical properties of semiconductors and should be useful for designing advanced nano-optoelectronic devices.

Keywords

strain-gradient / ZnO nanowire / cathodoluminescene / exciton energy / energy bands

Cite this article

Download citation ▾
Xue-Wen Fu, Qiang Fu, Liang-Zhi Kou, Xin-Li Zhu, Rui Zhu, Jun Xu, Zhi-Min Liao, Qing Zhao, Wan-Lin Guo, Da-Peng Yu. Modifying optical properties of ZnO nanowires via strain-gradient. Front. Phys., 2013, 8(5): 509-515 DOI:10.1007/s11467-013-0386-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. M. Pereira and A. H. Castro Neto, Strain engineering of graphene’s electronic structure, Phys. Rev. Lett., 2009, 103(4): 046801

[2]

A. Maiti, Carbon nanotubes: Bandgap engineering with strain, Nat. Mater., 2003, 2(7): 440

[3]

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Size dependence of Young’s modulus in ZnO nanowires, Phys. Rev. Lett., 2006, 96(7): 075505

[4]

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Selfpowered nanowire devices, Nat. Nanotechnol., 2010, 5(5): 366

[5]

K. Kash, B. P. Van der Gaag, D. D. Mahoney, A. S. Gozdz, L. T. Florez, J. P. Harbison, and M. Sturge, Observation of quantum confinement by strain gradients, Phys. Rev. Lett., 1991, 67(10): 1326

[6]

B. A. Bernevig and S.-C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett., 2006, 96(10): 106802

[7]

J. Harden, B. Mbarga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, Giant flexoelectricity of bentcore nematic liquid crystals, Phys. Rev. Lett., 2006, 97(15): 157802

[8]

A. K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics, Phys. Rev. B, 1986, 34(8): 5883

[9]

M. Leong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, Silicon device scaling to the sub-10-nm regime, Science, 2004, 306(5704): 2057

[10]

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L.Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams, Nature Nanotech., 2009, 4(11): 732

[11]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morko竎, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005, 98(4): 041301

[12]

Y. Qin, X. Wang, and Z. L. Wang, Microfibre-nanowire hybrid structure for energy scavenging, Nature, 2008, 451(7180): 809

[13]

Z. L. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 2006, 312(5771): 242

[14]

X. B. Han, L. Z. Kou, X. L. Lang, H. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Electronic and mechanical coupling in bent ZnO nanowires, Adv. Mater., 2009, 21(48): 4937

[15]

X. B. Han, L. Z. Kou, X. L. Lang, H. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Strain-gradient effect on energy bands in bent ZnO microwires, Adv. Mater., 2012, 24(34): 4707

[16]

J. Y. Gao, X. Z. Zhang, Y. H. Sun, Q. Zhao, and D. P. Yu, Compensation mechanism in N-doped ZnO nanowires, Nanotechnology, 2010, 21(24): 245703

[17]

J. Xu, L. Chen, L. S. Yu, H. Liang, B. S. Zhang, and K. M. Lau, Cathodoluminescence study of InGaN/GaN quantumwell LED structures grown on a Si substrate, J. Electron. Mater., 2007, 36(9): 1144

[18]

J. Yoo, G. C. Yi, and L. S. Dang, Probing exciton diffusion in semiconductors using emiconductor-nanorod quantum structures, Small, 2008, 4(4): 467

[19]

R. L. Weiher and W. C. Tait, Mixed-mode excitons in the photoluminescence of zinc oxide-reabsorption and exciton diffusion, Phys. Rev. B, 1972, 5(2): 623

[20]

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. And Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter, 2002, 14(11): 2745

[21]

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865

[22]

C. Li, W. Guo, Y. Kong, and H. Gao, First-principles study on ZnO nanoclusters with hexagonal prism structures, Appl. Phys. Lett., 2007, 90(22): 223102

[23]

L. Kou, C. Li, Z. Zhang, and W. Guo, Electric-field- and hydrogen-passivation-induced band modulations in armchair ZnO nanoribbons, J. Phys. Chem. C, 2010, 114(2): 1326

[24]

R. Resta, Towards a bulk theory of flexoelectricity, Phys. Rev. Lett., 2010, 105(12): 127601

[25]

Y. Gu, I. L. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark, Quantum confinement in ZnO nanorods, Appl. Phys. Lett., 2004, 85(17): 3833

[26]

S. Achour, A. Harabi, and N. Tabet, Cathodoluminescence dependence upon irradiation time, Mater. Sci. Eng. B, 1996, 42(1-3): 289

[27]

M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, Piezoelectric nanogenerator using p-type ZnO nanowire arrays, Nano Lett., 2009, 9(3): 1223

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (439KB)

1233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/