Electronic transport properties of topological insulator films and low dimensional superconductors
Ying Xing (邢颖), Yi Sun (孙祎), Meenakshi Singh, Yan-Fei Zhao (赵弇斐), Moses H. W. Chan, Jian Wang (王健)
Electronic transport properties of topological insulator films and low dimensional superconductors
In this review, we present a summary of some recent experiments on topological insulators (TIs) and superconducting nanowires and films. Electron-electron interaction (EEI), weak anti-localization (WAL) and anisotropic magneto-resistance (AMR) effect found in topological insulator films by transport measurements are reported. Then, transport properties of superconducting films, bridges and nanowires and proximity effect in non-superconducting nanowires are described. Finally, the interplay between topological insulators and superconductors (SCs) is also discussed.
electronic transport / topological insulator / superconductor / low dimensional
[ait1] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82: 3045
CrossRef
ADS
Google scholar
|
[ait2] |
S. Murakami, N. Nagaosa, and S. C. Zhang, Spin-Hall insulator, Phys. Rev. Lett., 2004, 93(15): 156804
CrossRef
ADS
Google scholar
|
[ait3] |
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature, 2008, 452(7190): 970
CrossRef
ADS
Google scholar
|
[ait4] |
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 398
CrossRef
ADS
Google scholar
|
[ait5] |
P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Topological surface states protected from backscattering by chiral spin texture, Nature, 2009, 460(7259): 1106
CrossRef
ADS
Google scholar
|
[ait6] |
T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Experimental demonstration of topological surface states protected by time-reversal symmetry, Phys. Rev. Lett., 2009, 103(26): 266803
CrossRef
ADS
Google scholar
|
[ait7] |
J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett., 2010, 105(17): 176602
CrossRef
ADS
Google scholar
|
[ait8] |
J.G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, and N. P. Ong, Quantum interference in macroscopic crystals of nonmetallic Bi2Se3, Phys. Rev. Lett., 2009, 103(24): 246601
CrossRef
ADS
Google scholar
|
[ait9] |
D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3, Science, 2010, 329(5993): 821
CrossRef
ADS
Google scholar
|
[ait10] |
H. L. Peng, K. J. Lai, D. S. Kong, S. Meister, Y. L. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Aharonov-Bohm interference in topological insulator nanoribbons, Nat. Mater., 2010, 9: 225
|
[ait11] |
C. Z. Chang, J. S. Zhang, X. Feng, J. Shen, Z. C. Zhang, M. H. Guo, K. Li, Y. B. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. H. Ji, X. Chen, J. F. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator, Science, 2013, 340(6129): 167
CrossRef
ADS
Google scholar
|
[ait12] |
Y. Liu, Z. Ma, Y. F. Zhao, M. Singh, and J. Wang, Transport properties of topological insulators films and nanowires, Chinese Physics B, 2013, 22(6): 067302
CrossRef
ADS
Google scholar
|
[ait13] |
M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science, 2007, 318(5851): 766
CrossRef
ADS
Google scholar
|
[ait14] |
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 438
CrossRef
ADS
Google scholar
|
[ait15] |
H. Z. Lu, J. R. Shi, and S. Q. Shen, Competition between weak localization and antilocalization in topological surface states, Phys. Rev. Lett., 2011, 107(7): 076801
CrossRef
ADS
Google scholar
|
[ait16] |
M. H. Liu, J. S. Zhang, C. Z. Chang, Z. C. Zhang, X. Feng, K. Li, K. He, L. L. Wang, X. Chen, X. Dai, Z. Fang, Q. K. Xue, X. C. Ma, and Y. Y. Wang, Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator, Phys. Rev. Lett., 2012, 108(3): 036805
CrossRef
ADS
Google scholar
|
[ait17] |
J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potentia l and weak antilocalization in Bi2Se3, Phys. Rev. Lett., 2010, 105(17): 176602
CrossRef
ADS
Google scholar
|
[ait18] |
M. Liu, C. Z. Chang, Z. Zhang, Y. Zhang, W. Ruan, K. He, L. Wang, X. Chen, J. F. Jia, S. C. Zhang, Q. K. Xue, X. Ma, and Y. Wang, Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two-dimensional limit, Phys. Rev. B, 2011, 83(16): 165440
CrossRef
ADS
Google scholar
|
[ait19] |
H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett., 2011, 106(16): 166805
CrossRef
ADS
Google scholar
|
[ait20] |
M. Tian, W. Ning, Z. Qu, H. F. Du, J. Wang, and Y. H. Zhang, Dual evidence of surface Dirac states in thin cylindrical topological insulator Bi2Te3 nanowires, Scientific Reports, 2013, 3: 1212
CrossRef
ADS
Google scholar
|
[ait21] |
J. Wang, A. M. DaSilva, C. Z. Chang, K. He, J. K. Jain, N. Samarth, X. C. Ma, Q. K. Xue, and M. H. W. Chan, Evidence for electron-electron interaction in topological insulator thin films, Phys. Rev. B, 2011, 83(24): 245438
CrossRef
ADS
Google scholar
|
[ait22] |
S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys., 1980, 63(2): 707
CrossRef
ADS
Google scholar
|
[ait23] |
S. Maekawa and H. Fukuyama, Magnetoresistance in twodimensional disordered systems: Effects of Zeeman splitting and spin-orbit scattering, J. Phys. Soc. Jpn., 1981, 50(8): 2516
CrossRef
ADS
Google scholar
|
[ait24] |
P. A. Lee and T. V. Ramakrishnan, Magnetoresistance of weakly disordered electrons, Phys. Rev. B, 1982, 26(8): 4009
CrossRef
ADS
Google scholar
|
[ait25] |
Z. Zeng, T. A. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J. S. Lee, J. Wang, Z. M. Wang, S. Yu, M. E. Hawkridge, M. Benamara, and G. J. Salamo, Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111) substrates: A potential route to fabricate topological insulator p-n junction, AIP Advances, 2013, 3(7): 072112
CrossRef
ADS
Google scholar
|
[ait26] |
J. Wang, H. Li, C. Chang, K. He, J. S. Lee, H. Lu, Y. Sun, X. Ma, N. Samarth, S. Shen, Q. Xue, M. Xie, and M. H. W. Chan, Anomalous anisotropic magnetoresistance in topological insulator films, Nano Research, 2012, 5(10): 739
CrossRef
ADS
Google scholar
|
[ait27] |
J. Wang, X. C. Ma, Y. Qi, Y. S. Fu, S. H. Ji, L. Lu, J. F. Jia, and Q. K. Xue, Negative magnetoresistance in fractal Pb thin films on Si(111), Appl. Phys. Lett., 2007, 90(11): 113109
CrossRef
ADS
Google scholar
|
[ait28] |
J. Wang, X. C. Ma, Y. Qi, Y. S. Fu, S. H. Ji, L. Lu, X. C. Xie, J. F. Jia, X. Chen, and Q. K. Xue, An unusual magnetoresistance effect in the heterojunction structure of an ultrathin single-crystal Pb film on silicon substrate, Nanotechnology, 2008, 19(47): 475708
CrossRef
ADS
Google scholar
|
[ait29] |
J. Wang, X. C. Ma, L. Lu, A. Z. Jin, C. Z. Gu, X. C. Xie, J. F. Jia, X. Chen, and Q. K. Xue, Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts, Appl. Phys. Lett., 2008, 92(23): 233119
CrossRef
ADS
Google scholar
|
[ait30] |
J. Wang, X. Ma, S. Ji, Y. Qi, Y. Fu, A. Jin, L. Lu, C. Gu, X. C. Xie, M. Tian, J. Jia, and Q. Xue, Magnetoresistance oscillations of ultrathin Pb bridges, Nano Research, 2009, 2(9): 671
CrossRef
ADS
Google scholar
|
[ait31] |
W. A. Little and R. D. Parks, Observation of quantum periodicity in the transition temperature of a superconducting cylinder, Observation of Physical Review Letters, 1962, 9(1): 9
CrossRef
ADS
Google scholar
|
[ait32] |
M. L. Tian, J. Wang, Q. Zhang, N. Kumar, T. E. Mallouk, and M. H. W. Chan, Superconductivity and quantum oscillations in crystalline Bi nanowire, Nano Lett., 2009, 9(9): 3196
CrossRef
ADS
Google scholar
|
[ait33] |
M. L. Tian, J. G. Wang, N. Kumar, T. H. Han, Y. Kobayashi, Y. Liu, T. E. Mallouk, and M. H.W. Chan, Observation of superconductivity in granular Bi nanowires fabricated by electrodeposition, Nano Lett., 2006, 6(12): 2773
CrossRef
ADS
Google scholar
|
[ait34] |
Y. Eckstein and J. B. Ketterson, Shubnikov-de Haas effect in bismuth, Phys. Rev., 1965, 137(6A): A1777
CrossRef
ADS
Google scholar
|
[ait35] |
P. De Gennes, Boundary effects in superconductors, Rev. Mod. Phys., 1964, 36(1): 225
CrossRef
ADS
Google scholar
|
[ait36] |
J. Wang, Y. Sun, M. Tian, B. Liu, M. Singh, and M. H. W. Chan, Superconductivity in single crystalline Pb nanowires contacted by normal metal electrodes, Phys. Rev. B, 2012, 86(3): 035439
CrossRef
ADS
Google scholar
|
[ait37] |
M. Tian, N. Kumar, S. Y. Xu, J. G. Wang, J. S. Kurtz, and M. H. W. Chan, Suppression of superconductivity in zinc nanowires by bulk superconductors, Phys. Rev. Lett., 2005, 95(7): 076802
CrossRef
ADS
Google scholar
|
[ait38] |
M. L. Tian, N. Kumar, J. G. Wang, S. Y. Xu, and M. H. W. Chan, Influence of a bulk superconducting environment on the superconductivity of one-dimensional zinc nanowires, Phys. Rev. B, 2006, 74(1): 014515
CrossRef
ADS
Google scholar
|
[ait39] |
M. Singh, J. Wang, M. L. Tian, T. E. Mallouk, and M. H. W. Chan, Antiproximity effect in aluminum nanowires with no applied magnetic field, Phys. Rev. B, 2011, 83(22): 220506
CrossRef
ADS
Google scholar
|
[ait40] |
Y. Chen, Y. H. Lin, S. D. Snyder, and A. M. Goldman, Stabilization of superconductivity by magnetic field in outof-equilibrium nanowires, Phys. Rev. B, 2011, 83(5): 054505
CrossRef
ADS
Google scholar
|
[ait41] |
Y. Chen, S. D. Snyder, and A. M. Goldman, Magnetic-fieldinduced superconducting state in Zn nanowires driven in the normal state by an electric current, Phys. Rev. Lett., 2009, 103(12): 127002
CrossRef
ADS
Google scholar
|
[ait42] |
M. Singh, J. Wang, M. L. Tian, Q. Zhang, A. Pereira, N. Kumar, T. E. Mallouk, and M. H. W. Chan, Synthesis and superconductivity of electrochemically grown single-crystal aluminum nanowires, Chem. Mater., 2009, 21(23): 5557
CrossRef
ADS
Google scholar
|
[ait43] |
H. C. Fu, A. Seidel, J. Clarke, and D. H. Lee, Stabilizing superconductivity in nanowires by coupling to dissipative environments, Phys. Rev. Lett., 2006, 96(15): 157005
CrossRef
ADS
Google scholar
|
[ait44] |
A. O. Caldeira and A. J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems, Phys. Rev. Lett., 1981, 46(4): 211
CrossRef
ADS
Google scholar
|
[ait45] |
M. L. Tian, J. U. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism, Nano Lett., 2003, 3(7): 919
CrossRef
ADS
Google scholar
|
[ait46] |
Y. Sun, J. Wang, W. W. Zhao, M. L. Tian, M. Singh, and M. H. W. Chan, Voltage-current properties of superconducting amorphous tungsten nanostrips, Scientific Reports, 2013, 3:2307
CrossRef
ADS
Google scholar
|
[ait47] |
J. Wang, C. Shi, M. Tian, Q. Zhang, N. Kumar, J. Jain, T. Mallouk, and M. Chan, Proximity-induced superconductivity in nanowires: Minigap state and differential magnetoresistance oscillations, Phys. Rev. Lett., 2009, 102(24): 247003
CrossRef
ADS
Google scholar
|
[ait48] |
L. He and J. Wang, Periodic magnetoresistance oscillations induced by superconducting vortices in single crystal Au nanowires, Nanotechnology, 2011, 22(44): 445704
CrossRef
ADS
Google scholar
|
[ait49] |
A. I. Buzdin, Proximity effects in superconductorferromagnet heterostructures, Rev. Mod. Phys., 2005, 77(3): 935
CrossRef
ADS
Google scholar
|
[ait50] |
E. A. Demler, G. B. Arnold, and M. R. Beasley, Superconducting proximity effects in magnetic metals, Phys. Rev. B, 1997, 55(22): 15174
CrossRef
ADS
Google scholar
|
[ait51] |
M. Giroud, H. Courtois, K. Hasselbach, D. Mailly, and B. Pannetier, Superconducting proximity effect in a mesoscopic ferromagnetic wire, Phys. Rev. B, 1998, 58(18): R11872
CrossRef
ADS
Google scholar
|
[ait52] |
J. Wang, M. Singh, M. Tian, N. Kumar, B. Z. Liu, C. Shi, J. K. Jain, N. Samarth, T. E. Mallouk, and M. H .W. Chan, Interplay between superconductivity and ferromagnetism in crystalline nanowires, Nat. Phys., 2010, 6(5): 389
CrossRef
ADS
Google scholar
|
[ait53] |
H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Onset of superconductivity in ultrathin granular metal films, Phys. Rev. B, 1989, 40(1): 182
CrossRef
ADS
Google scholar
|
[ait54] |
F. J. Jedema, B. J. van Wees, B. H. Hoving, A. T. Filip, and T. M. Klapwijk, Spin-accumulation-induced resistance in mesoscopic ferromagnet-superconductor junctions, Phys. Rev. B, 1999, 60(24): 16549
CrossRef
ADS
Google scholar
|
[ait55] |
V. I. Fal’ko, A. F. Volkov, and C. Lambert, Interplay between spin-relaxation and Andreev reflection in ferromagnetic wires with superconducting contacts, Phys. Rev. B, 1999, 60(22): 15394
CrossRef
ADS
Google scholar
|
[ait56] |
Y. N. Chiang, O. G. Shevchenko, and R. N. Kolenov, Manifestation of coherent and spin-dependent effects in the conductance of ferromagnets adjoining a superconductor, Low Temp. Phys., 2007, 33(4): 314
CrossRef
ADS
Google scholar
|
[ait57] |
P. Santhanam, C. Chi, S. Wind, M. Brady, and J. Bucchignano, Resistance anomaly near the superconducting transition temperature in short aluminum wires, Phys. Rev. Lett., 1991, 66(17): 2254
CrossRef
ADS
Google scholar
|
[ait58] |
M. Eschrig, Spin-polarized supercurrents for spintronics, Phys. Today, 2011, 64(1): 43
CrossRef
ADS
Google scholar
|
[ait59] |
L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett., 2008, 100(9): 096407
CrossRef
ADS
Google scholar
|
[ait60] |
J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, and N. Nagaosa Nagaosa, Unconventional superconductivity on a topological insulator, Phys. Rev. Lett., 2010, 104(6): 067001
CrossRef
ADS
Google scholar
|
[ait61] |
B. Sacepe, J. B. Oostinga, J. Li, A. Ubaldini, N. J. G. Couto, E. Giannini, and A. F. Morpurgo, Gate-tuned normal and superconducting transport at the surface of a topological insulator, Nat. Commun., 2011, 2: 575
CrossRef
ADS
Google scholar
|
[ait62] |
M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Josephson supercurrent through a topological insulator surface state, Nat. Mater., 2012, 12(2): 171
CrossRef
ADS
Google scholar
|
[ait63] |
M. X. Wang, C. H. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Y. Shen, X. C. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, The coexistence of superconductivity and topological order in the Bi2Se3 thin films, Science, 2012, 336(6077): 52
CrossRef
ADS
Google scholar
|
[ait64] |
Y. X. Ou, M. Singh, and J. Wang, Quantum transport in topological insulator hybrid structures-A combination of topological insulator and superconductor, Science China-Phys. Mech. Astron., 2012, 55(12): 2226
|
[ait65] |
J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J. K. Jain, N. Samarth, T. E. Mallouk, and M. H. W. Chan, Interplay between superconductivity and ferromagnetism in crystalline nanowires, Nat. Phys., 2010, 6(5): 389
CrossRef
ADS
Google scholar
|
[ait66] |
D. Zhang, J. Wang, A. M. DaSilva, J. S. Lee, H. R. Gutierrez, M. H. W. Chan, J. Jain, and N. Samarth, Superconducting proximity effect and possible evidence for Pearl vortices in a candidate topological insulator, Phys. Rev. B, 2011, 84(16): 165120
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |