Electronic transport properties of topological insulator films and low dimensional superconductors

Ying Xing (邢颖) , Yi Sun (孙祎) , Meenakshi Singh , Yan-Fei Zhao (赵弇斐) , Moses H. W. Chan , Jian Wang (王健)

Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 491 -508.

PDF (1554KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 491 -508. DOI: 10.1007/s11467-013-0380-2
REVIEW ARTICLE

Electronic transport properties of topological insulator films and low dimensional superconductors

Author information +
History +
PDF (1554KB)

Abstract

In this review, we present a summary of some recent experiments on topological insulators (TIs) and superconducting nanowires and films. Electron-electron interaction (EEI), weak anti-localization (WAL) and anisotropic magneto-resistance (AMR) effect found in topological insulator films by transport measurements are reported. Then, transport properties of superconducting films, bridges and nanowires and proximity effect in non-superconducting nanowires are described. Finally, the interplay between topological insulators and superconductors (SCs) is also discussed.

Keywords

electronic transport / topological insulator / superconductor / low dimensional

Cite this article

Download citation ▾
Ying Xing (邢颖), Yi Sun (孙祎), Meenakshi Singh, Yan-Fei Zhao (赵弇斐), Moses H. W. Chan, Jian Wang (王健). Electronic transport properties of topological insulator films and low dimensional superconductors. Front. Phys., 2013, 8(5): 491-508 DOI:10.1007/s11467-013-0380-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82: 3045

[2]

S. Murakami, N. Nagaosa, and S. C. Zhang, Spin-Hall insulator, Phys. Rev. Lett., 2004, 93(15): 156804

[3]

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature, 2008, 452(7190): 970

[4]

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 398

[5]

P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Topological surface states protected from backscattering by chiral spin texture, Nature, 2009, 460(7259): 1106

[6]

T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Experimental demonstration of topological surface states protected by time-reversal symmetry, Phys. Rev. Lett., 2009, 103(26): 266803

[7]

J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett., 2010, 105(17): 176602

[8]

J.G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, and N. P. Ong, Quantum interference in macroscopic crystals of nonmetallic Bi2Se3, Phys. Rev. Lett., 2009, 103(24): 246601

[9]

D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3, Science, 2010, 329(5993): 821

[10]

H. L. Peng, K. J. Lai, D. S. Kong, S. Meister, Y. L. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Aharonov-Bohm interference in topological insulator nanoribbons, Nat. Mater., 2010, 9: 225

[11]

C. Z. Chang, J. S. Zhang, X. Feng, J. Shen, Z. C. Zhang, M. H. Guo, K. Li, Y. B. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. H. Ji, X. Chen, J. F. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator, Science, 2013, 340(6129): 167

[12]

Y. Liu, Z. Ma, Y. F. Zhao, M. Singh, and J. Wang, Transport properties of topological insulators films and nanowires, Chinese Physics B, 2013, 22(6): 067302

[13]

M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science, 2007, 318(5851): 766

[14]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 438

[15]

H. Z. Lu, J. R. Shi, and S. Q. Shen, Competition between weak localization and antilocalization in topological surface states, Phys. Rev. Lett., 2011, 107(7): 076801

[16]

M. H. Liu, J. S. Zhang, C. Z. Chang, Z. C. Zhang, X. Feng, K. Li, K. He, L. L. Wang, X. Chen, X. Dai, Z. Fang, Q. K. Xue, X. C. Ma, and Y. Y. Wang, Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator, Phys. Rev. Lett., 2012, 108(3): 036805

[17]

J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potentia l and weak antilocalization in Bi2Se3, Phys. Rev. Lett., 2010, 105(17): 176602

[18]

M. Liu, C. Z. Chang, Z. Zhang, Y. Zhang, W. Ruan, K. He, L. Wang, X. Chen, J. F. Jia, S. C. Zhang, Q. K. Xue, X. Ma, and Y. Wang, Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two-dimensional limit, Phys. Rev. B, 2011, 83(16): 165440

[19]

H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett., 2011, 106(16): 166805

[20]

M. Tian, W. Ning, Z. Qu, H. F. Du, J. Wang, and Y. H. Zhang, Dual evidence of surface Dirac states in thin cylindrical topological insulator Bi2Te3 nanowires, Scientific Reports, 2013, 3: 1212

[21]

J. Wang, A. M. DaSilva, C. Z. Chang, K. He, J. K. Jain, N. Samarth, X. C. Ma, Q. K. Xue, and M. H. W. Chan, Evidence for electron-electron interaction in topological insulator thin films, Phys. Rev. B, 2011, 83(24): 245438

[22]

S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys., 1980, 63(2): 707

[23]

S. Maekawa and H. Fukuyama, Magnetoresistance in twodimensional disordered systems: Effects of Zeeman splitting and spin-orbit scattering, J. Phys. Soc. Jpn., 1981, 50(8): 2516

[24]

P. A. Lee and T. V. Ramakrishnan, Magnetoresistance of weakly disordered electrons, Phys. Rev. B, 1982, 26(8): 4009

[25]

Z. Zeng, T. A. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J. S. Lee, J. Wang, Z. M. Wang, S. Yu, M. E. Hawkridge, M. Benamara, and G. J. Salamo, Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111) substrates: A potential route to fabricate topological insulator p-n junction, AIP Advances, 2013, 3(7): 072112

[26]

J. Wang, H. Li, C. Chang, K. He, J. S. Lee, H. Lu, Y. Sun, X. Ma, N. Samarth, S. Shen, Q. Xue, M. Xie, and M. H. W. Chan, Anomalous anisotropic magnetoresistance in topological insulator films, Nano Research, 2012, 5(10): 739

[27]

J. Wang, X. C. Ma, Y. Qi, Y. S. Fu, S. H. Ji, L. Lu, J. F. Jia, and Q. K. Xue, Negative magnetoresistance in fractal Pb thin films on Si(111), Appl. Phys. Lett., 2007, 90(11): 113109

[28]

J. Wang, X. C. Ma, Y. Qi, Y. S. Fu, S. H. Ji, L. Lu, X. C. Xie, J. F. Jia, X. Chen, and Q. K. Xue, An unusual magnetoresistance effect in the heterojunction structure of an ultrathin single-crystal Pb film on silicon substrate, Nanotechnology, 2008, 19(47): 475708

[29]

J. Wang, X. C. Ma, L. Lu, A. Z. Jin, C. Z. Gu, X. C. Xie, J. F. Jia, X. Chen, and Q. K. Xue, Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts, Appl. Phys. Lett., 2008, 92(23): 233119

[30]

J. Wang, X. Ma, S. Ji, Y. Qi, Y. Fu, A. Jin, L. Lu, C. Gu, X. C. Xie, M. Tian, J. Jia, and Q. Xue, Magnetoresistance oscillations of ultrathin Pb bridges, Nano Research, 2009, 2(9): 671

[31]

W. A. Little and R. D. Parks, Observation of quantum periodicity in the transition temperature of a superconducting cylinder, Observation of Physical Review Letters, 1962, 9(1): 9

[32]

M. L. Tian, J. Wang, Q. Zhang, N. Kumar, T. E. Mallouk, and M. H. W. Chan, Superconductivity and quantum oscillations in crystalline Bi nanowire, Nano Lett., 2009, 9(9): 3196

[33]

M. L. Tian, J. G. Wang, N. Kumar, T. H. Han, Y. Kobayashi, Y. Liu, T. E. Mallouk, and M. H.W. Chan, Observation of superconductivity in granular Bi nanowires fabricated by electrodeposition, Nano Lett., 2006, 6(12): 2773

[34]

Y. Eckstein and J. B. Ketterson, Shubnikov-de Haas effect in bismuth, Phys. Rev., 1965, 137(6A): A1777

[35]

P. De Gennes, Boundary effects in superconductors, Rev. Mod. Phys., 1964, 36(1): 225

[36]

J. Wang, Y. Sun, M. Tian, B. Liu, M. Singh, and M. H. W. Chan, Superconductivity in single crystalline Pb nanowires contacted by normal metal electrodes, Phys. Rev. B, 2012, 86(3): 035439

[37]

M. Tian, N. Kumar, S. Y. Xu, J. G. Wang, J. S. Kurtz, and M. H. W. Chan, Suppression of superconductivity in zinc nanowires by bulk superconductors, Phys. Rev. Lett., 2005, 95(7): 076802

[38]

M. L. Tian, N. Kumar, J. G. Wang, S. Y. Xu, and M. H. W. Chan, Influence of a bulk superconducting environment on the superconductivity of one-dimensional zinc nanowires, Phys. Rev. B, 2006, 74(1): 014515

[39]

M. Singh, J. Wang, M. L. Tian, T. E. Mallouk, and M. H. W. Chan, Antiproximity effect in aluminum nanowires with no applied magnetic field, Phys. Rev. B, 2011, 83(22): 220506

[40]

Y. Chen, Y. H. Lin, S. D. Snyder, and A. M. Goldman, Stabilization of superconductivity by magnetic field in outof-equilibrium nanowires, Phys. Rev. B, 2011, 83(5): 054505

[41]

Y. Chen, S. D. Snyder, and A. M. Goldman, Magnetic-fieldinduced superconducting state in Zn nanowires driven in the normal state by an electric current, Phys. Rev. Lett., 2009, 103(12): 127002

[42]

M. Singh, J. Wang, M. L. Tian, Q. Zhang, A. Pereira, N. Kumar, T. E. Mallouk, and M. H. W. Chan, Synthesis and superconductivity of electrochemically grown single-crystal aluminum nanowires, Chem. Mater., 2009, 21(23): 5557

[43]

H. C. Fu, A. Seidel, J. Clarke, and D. H. Lee, Stabilizing superconductivity in nanowires by coupling to dissipative environments, Phys. Rev. Lett., 2006, 96(15): 157005

[44]

A. O. Caldeira and A. J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems, Phys. Rev. Lett., 1981, 46(4): 211

[45]

M. L. Tian, J. U. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism, Nano Lett., 2003, 3(7): 919

[46]

Y. Sun, J. Wang, W. W. Zhao, M. L. Tian, M. Singh, and M. H. W. Chan, Voltage-current properties of superconducting amorphous tungsten nanostrips, Scientific Reports, 2013, 3:2307

[47]

J. Wang, C. Shi, M. Tian, Q. Zhang, N. Kumar, J. Jain, T. Mallouk, and M. Chan, Proximity-induced superconductivity in nanowires: Minigap state and differential magnetoresistance oscillations, Phys. Rev. Lett., 2009, 102(24): 247003

[48]

L. He and J. Wang, Periodic magnetoresistance oscillations induced by superconducting vortices in single crystal Au nanowires, Nanotechnology, 2011, 22(44): 445704

[49]

A. I. Buzdin, Proximity effects in superconductorferromagnet heterostructures, Rev. Mod. Phys., 2005, 77(3): 935

[50]

E. A. Demler, G. B. Arnold, and M. R. Beasley, Superconducting proximity effects in magnetic metals, Phys. Rev. B, 1997, 55(22): 15174

[51]

M. Giroud, H. Courtois, K. Hasselbach, D. Mailly, and B. Pannetier, Superconducting proximity effect in a mesoscopic ferromagnetic wire, Phys. Rev. B, 1998, 58(18): R11872

[52]

J. Wang, M. Singh, M. Tian, N. Kumar, B. Z. Liu, C. Shi, J. K. Jain, N. Samarth, T. E. Mallouk, and M. H .W. Chan, Interplay between superconductivity and ferromagnetism in crystalline nanowires, Nat. Phys., 2010, 6(5): 389

[53]

H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Onset of superconductivity in ultrathin granular metal films, Phys. Rev. B, 1989, 40(1): 182

[54]

F. J. Jedema, B. J. van Wees, B. H. Hoving, A. T. Filip, and T. M. Klapwijk, Spin-accumulation-induced resistance in mesoscopic ferromagnet-superconductor junctions, Phys. Rev. B, 1999, 60(24): 16549

[55]

V. I. Fal’ko, A. F. Volkov, and C. Lambert, Interplay between spin-relaxation and Andreev reflection in ferromagnetic wires with superconducting contacts, Phys. Rev. B, 1999, 60(22): 15394

[56]

Y. N. Chiang, O. G. Shevchenko, and R. N. Kolenov, Manifestation of coherent and spin-dependent effects in the conductance of ferromagnets adjoining a superconductor, Low Temp. Phys., 2007, 33(4): 314

[57]

P. Santhanam, C. Chi, S. Wind, M. Brady, and J. Bucchignano, Resistance anomaly near the superconducting transition temperature in short aluminum wires, Phys. Rev. Lett., 1991, 66(17): 2254

[58]

M. Eschrig, Spin-polarized supercurrents for spintronics, Phys. Today, 2011, 64(1): 43

[59]

L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett., 2008, 100(9): 096407

[60]

J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, and N. Nagaosa Nagaosa, Unconventional superconductivity on a topological insulator, Phys. Rev. Lett., 2010, 104(6): 067001

[61]

B. Sacepe, J. B. Oostinga, J. Li, A. Ubaldini, N. J. G. Couto, E. Giannini, and A. F. Morpurgo, Gate-tuned normal and superconducting transport at the surface of a topological insulator, Nat. Commun., 2011, 2: 575

[62]

M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Josephson supercurrent through a topological insulator surface state, Nat. Mater., 2012, 12(2): 171

[63]

M. X. Wang, C. H. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Y. Shen, X. C. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, The coexistence of superconductivity and topological order in the Bi2Se3 thin films, Science, 2012, 336(6077): 52

[64]

Y. X. Ou, M. Singh, and J. Wang, Quantum transport in topological insulator hybrid structures-A combination of topological insulator and superconductor, Science China-Phys. Mech. Astron., 2012, 55(12): 2226

[65]

J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J. K. Jain, N. Samarth, T. E. Mallouk, and M. H. W. Chan, Interplay between superconductivity and ferromagnetism in crystalline nanowires, Nat. Phys., 2010, 6(5): 389

[66]

D. Zhang, J. Wang, A. M. DaSilva, J. S. Lee, H. R. Gutierrez, M. H. W. Chan, J. Jain, and N. Samarth, Superconducting proximity effect and possible evidence for Pearl vortices in a candidate topological insulator, Phys. Rev. B, 2011, 84(16): 165120

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1554KB)

1186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/